Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The presenting symptom of dementia with Lewy bodies is often cognitive dysfunction, though dementia eventually occurs in all individuals with DLB. In contrast to Alzheimer's disease (AD), in which memory loss is the first symptom, those with DLB first experience impaired attention, executive function, and visuospatial function, while memory is affected later. These impairments present as driving difficulty, such as becoming lost, misjudging distances, or as impaired job performance. In terms of cognitive testing, individuals may have problems with figure copying as a result of visuospatial impairment, with clock-drawing due to executive function impairment, and difficulty with serial sevens as a result of impaired attention. Short-term memory and orientation to time and place remain intact in the earlier stages of the disease.
While the specific symptoms in a person with DLB may vary, core features include: fluctuating cognition with great variations in attention and alertness from day to day and hour to hour, recurrent visual hallucinations (observed in 75% of people with DLB), and motor features of Parkinson's disease. Suggestive symptoms are rapid eye movement (REM)-sleep behavior disorder and abnormalities detected in PET or SPECT scans. REM sleep behavior disorder (RBD) often is a symptom first recognized by the patient's caretaker. RBD includes vivid dreaming, with persistent dreams, purposeful or violent movements, and falling out of bed. Benzodiazepines, anticholinergics, surgical anesthetics, some antidepressants, and over-the-counter drug cold remedies may cause acute confusion, delusions, and hallucinations.
Tremors are less common in DLB than in Parkinson's disease. Parkinsonian features may include shuffling gait, reduced arm-swing during walking, blank expression (reduced range of facial expression), stiffness of movements, ratchet-like cogwheeling movements, low speech volume, sialorrhea, and difficulty swallowing. Also, DLB patients often experience problems with orthostatic hypotension, including repeated falls, fainting, and transient loss of consciousness. Sleep-disordered breathing, a problem in multiple system atrophy, also may be a problem.
One of the most critical and distinctive clinical features of the disease is hypersensitivity to neuroleptic and antiemetic medications that affect dopaminergic and cholinergic systems. In the worst cases, a patient treated with these medications could become catatonic, lose cognitive function, or develop life-threatening muscle rigidity. Some commonly used medications that should be used with great caution, if at all, for people with DLB, are chlorpromazine, haloperidol, or thioridazine.
Visual hallucinations in people with DLB most commonly involve perception of people or animals that are not there, and may reflect Lewy bodies or AD pathology in the temporal lobe. Delusions may include reduplicative paramnesia and other elaborate misperceptions or misinterpretations. These hallucinations are not necessarily disturbing, and in some cases, the person with DLB may have insight into the hallucinations and even be amused by them, or be conscious they are not real. People with DLB also may have problems with vision, including double vision, and misinterpretation of what they see, for example, mistaking a pile of socks for snakes or a clothes closet for the bathroom.
Parkinson-plus syndromes, also known as disorders of multiple system degeneration, is a group of neurodegenerative diseases featuring the classical features of Parkinson's disease (tremor, rigidity, akinesia/bradykinesia, and postural instability) with additional features that distinguish them from simple idiopathic Parkinson's disease (PD). Some consider Alzheimer's disease to be in this group. Parkinson-plus syndromes are either inherited genetically or occur sporadically.
The atypical parkinsonian or Parkinson-plus syndromes are often difficult to differentiate from PD and each other. They include multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Dementia with Lewy bodies (DLB), may or may not be part of the PD spectrum, but it is increasingly recognized as the second-most common type of neurodegenerative dementia after Alzheimer's disease. These disorders are currently lumped into two groups, the synucleinopathies and the tauopathies. They may coexist with other pathologies.
Additional Parkinson-plus syndromes include Pick's disease and olivopontocerebellar atrophy. The latter is characterized by ataxia and dysarthria, and may occur either as an inherited disorder or as a variant of multiple system atrophy. MSA is also characterized by autonomic failure, formerly known as Shy–Drager syndrome.
Clinical features that distinguish Parkinson-plus syndromes from idiopathic PD include symmetrical onset, a lack of or irregular resting tremor, and a reduced response to dopaminergic drugs (including levodopa). Additional features include bradykinesia, early-onset postural instability, increased rigidity in axial muscles, dysautonomia, alien limb syndrome, supranuclear gaze palsy, apraxia, involvement of the cerebellum including the pyramidal cells, and in some instances significant cognitive impairment.
Tardive dyskinesia is characterized by repetitive, involuntary movements. Some examples of these types of involuntary movements include:
- Grimacing
- Tongue movements
- Lip smacking
- Lip puckering
- Pursing of the lips
- Excessive eye blinking
Rapid, involuntary movements of the limbs, torso, and fingers may also occur. In some cases, an individual's legs can be so affected that walking becomes difficult or impossible. These symptoms are the opposite of patients who are diagnosed with Parkinson's disease. Parkinson's patients have difficulty moving, whereas tardive dyskinesia patients have difficulty not moving.
Respiratory irregularity, such as grunting and difficulty breathing, is another symptom associated with tardive dyskinesia, although studies have shown that the prevalence rate is relatively low.
Tardive dyskinesia is often misdiagnosed as a mental illness rather than a neurological disorder, and as a result patients are prescribed neuroleptic drugs, which increase the probability that the patient will develop a severe and disabling case, and shortening the typical survival period.
Other closely related neurological disorders have been recognized as variants of tardive dyskinesia. Tardive dystonia is similar to standard dystonia but permanent. Tardive akathisia involves painful feelings of inner tension and anxiety and a compulsive drive to move the body. In some extreme cases, afflicted individuals experience so much internal torture that they lose their ability to sit still. Tardive tourettism is a tic disorder featuring the same symptoms as Tourette syndrome. The two disorders are extremely close in nature and often can only be differentiated by the details of their respective onsets. Tardive myoclonus, a rare disorder, presents as brief jerks of muscles in the face, neck, trunk, and extremities.
"AIMS Examination": This test is used when psychotropic medications have been prescribed because patients sometimes develop tardive dyskinesia due to prolonged use of antipsychotic medications. The Abnormal Involuntary Movement Scale (AIMS) examination is a test used to identify the symptoms of tardive dyskinesia (TD). The test is not meant to tell whether there is an absence or presence of tardive dyskinesia. It just scales to level of symptoms indicated by the actions observed. The levels range from none to severe. The AIMS examination was constructed in the 1970s to measure involuntary facial, trunk, and limb movements. It is best to do this test before and after the administration of the psychotropic drugs. Taking the AIMS consistently can help to track severity of TD over time.
The most common first sign of MSA is the appearance of an "akinetic-rigid syndrome" (i.e. slowness of initiation of movement resembling Parkinson's disease) found in 62% at first presentation. Other common signs at onset include problems with balance (cerebellar ataxia) found in 22% at first presentation, followed by genito-urinary problems (9%). For men, the first sign can be erectile dysfunction (inability to achieve or sustain an erection). Women have also reported reduced genital sensitivity. Both men and women often experience problems with their bladders including urgency, frequency, incomplete bladder emptying, or an inability to pass urine (retention). About 1 in 5 MSA patients will fall in their first year of disease.
MSA is characterized by a combination of the following, which can be present in any combination:
- autonomic dysfunction
- parkinsonism (muscle rigidity +/ tremor and slow movement)
- ataxia (Poor coordination / unsteady walking)
A variant with combined features of MSA and Lewy body dementia may also exist. There have also been occasional instances of frontotemporal lobar degeneration associated with MSA.
Dementia with Lewy bodies (DLB) is a type of dementia that worsens over time. Additional symptoms may include fluctuations in alertness, visual hallucinations, slowness of movement, trouble walking, and rigidity. Excessive movement during sleep and mood changes such as depression are also common.
The cause is unknown. Typically, no family history of the disease exists among those affected. The underlying mechanism involves the buildup of Lewy bodies, clumps of alpha-synuclein protein in neurons. It is classified as a neurodegenerative disorder. A diagnosis may be suspected based on symptoms, with blood tests and medical imaging done to rule out other possible causes. The differential diagnosis includes Parkinson's and Alzheimer's.
At present there is no cure. Treatments are supportive and attempt to relieve some of the motor and psychological symptoms associated with the disease. Acetylcholinesterase inhibitors, such as donepezil, may provide some benefit. Some motor problems may improve with levodopa. Antipsychotics, even for hallucinations, should generally be avoided due to side effects.
DLB is the most common cause of dementia after Alzheimer's disease and vascular dementia. It typically begins after the age of 50. About 0.1% of those over 65 are affected. Men appear to be more commonly affected than women. In the late part of the disease, people may depend entirely on others for their care. Life expectancy following diagnosis is about eight years. The abnormal deposits that cause the disease were discovered in 1912 by Frederic Lewy.
The initial symptoms in two-thirds of cases are loss of balance, lunging forward when mobilizing, fast walking, bumping into objects or people, and falls.
Other common early symptoms are changes in personality, general slowing of movement, and visual symptoms.
Later symptoms and signs are dementia (typically including loss of inhibition and ability to organize information), slurring of speech, difficulty swallowing, and difficulty moving the eyes, particularly in the vertical direction. The latter accounts for some of the falls experienced by these patients as they are unable to look up or down.
Some of the other signs are poor eyelid function, contracture of the facial muscles, a backward tilt of the head with stiffening of the , sleep disruption, urinary incontinence and constipation.
The visual symptoms are of particular importance in the diagnosis of this disorder. Patients typically complain of difficulty reading due to the inability to look down well. Notably, the ophthalmoparesis experienced by these patients mainly concerns voluntary eye movement and the inability to make vertical saccades, which is often worse with downward saccades. Patients tend to have difficulty looking down (a downgaze ) followed by the addition of an upgaze palsy. This vertical gaze paresis will correct when the examiner passively rolls the patient's head up and down as part of a test for the oculocephalic reflex. Involuntary eye movement, as elicited by Bell's phenomenon, for instance, may be closer to normal. On close inspection, eye movements called "square-wave jerks" may be visible when the patient fixes at distance. These are fine movements, that can be mistaken for nystagmus, except that they are saccadic in nature, with no smooth phase. Difficulties with convergence (convergence insufficiency), where the eyes come closer together while focusing on something near, like the pages of a book, is typical. Because the eyes have trouble coming together to focus at short distances, the patient may complain of diplopia (double vision) when reading.
Cardinal manifestations:
- Supranuclear ophthalmoplegia
- Neck dystonia
- Parkinsonism
- Pseudobulbar palsy
- Behavioral and cognitive impairment
- Imbalance and walking difficulty
- Frequent falls
Accurate diagnosis of these Parkinson-plus syndromes is improved when precise diagnostic criteria are used. Since diagnosis of individual Parkinson-plus syndromes is difficult, the prognosis is often poor. Proper diagnosis of these neurodegenerative disorders is important as individual treatments vary depending on the condition. The nuclear medicine SPECT procedure using I-IBZM, is an effective tool in the establishment of the differential diagnosis between patients with PD and Parkinson-plus syndromes.
Symptoms of MJD are memory deficits, spasticity, difficulty with speech and swallowing, weakness in arms and legs, clumsiness, frequent urination and involuntary eye movements. Symptoms can begin in early adolescence and they get worse over time. Eventually, MJD leads to paralysis; however, intellectual functions usually remain the same.
Symptoms vary according to the kind of dystonia involved. In most cases, dystonia tends to lead to abnormal posturing, in particular on movement. Many sufferers have continuous pain, cramping, and relentless muscle spasms due to involuntary muscle movements. Other motor symptoms are possible including lip smacking.
Early symptoms may include loss of precision muscle coordination (sometimes first manifested in declining penmanship, frequent small injuries to the hands, and dropped items), cramping pain with sustained use, and trembling. Significant muscle pain and cramping may result from very minor exertions like holding a book and turning pages. It may become difficult to find a comfortable position for arms and legs with even the minor exertions associated with holding arms crossed causing significant pain similar to restless leg syndrome. Affected persons may notice trembling in the diaphragm while breathing, or the need to place hands in pockets, under legs while sitting or under pillows while sleeping to keep them still and to reduce pain. Trembling in the jaw may be felt and heard while lying down, and the constant movement to avoid pain may result in the grinding and wearing down of teeth, or symptoms similar to temporomandibular joint disorder. The voice may crack frequently or become harsh, triggering frequent throat clearing. Swallowing can become difficult and accompanied by painful cramping.
Electrical sensors (EMG) inserted into affected muscle groups, while painful, can provide a definitive diagnosis by showing pulsating nerve signals being transmitted to the muscles even when they are at rest. The brain appears to signal portions of fibers within the affected muscle groups at a firing speed of about 10 Hz causing them to pulsate, tremble and contort. When called upon to perform an intentional activity, the muscles fatigue very quickly and some portions of the muscle groups do not respond (causing weakness) while other portions over-respond or become rigid (causing micro-tears under load). The symptoms worsen significantly with use, especially in the case of focal dystonia, and a "mirror effect" is often observed in other body parts: Use of the right hand may cause pain and cramping in that hand as well as in the other hand and legs that were not being used. Stress, anxiety, lack of sleep, sustained use and cold temperatures can worsen symptoms.
Direct symptoms may be accompanied by secondary effects of the continuous muscle and brain activity, including disturbed sleep patterns, exhaustion, mood swings, mental stress, difficulty concentrating, blurred vision, digestive problems, and short temper. People with dystonia may also become depressed and find great difficulty adapting their activities and livelihood to a progressing disability. Side-effects from treatment and medications can also present challenges in normal activities.
In some cases, symptoms may progress and then plateau for years, or stop progressing entirely. The progression may be delayed by treatment or adaptive lifestyle changes, while forced continued use may make symptoms progress more rapidly. In others, the symptoms may progress to total disability, making some of the more risky forms of treatment worth considering. In some cases with patients who already have dystonia, a subsequent tramatic injury or the effects of general anethesia during an unrelated surgery can cause the symptoms to progress rapidly.
An accurate diagnosis may be difficult because of the way the disorder manifests itself. Sufferers may be diagnosed as having similar and perhaps related disorders including Parkinson's disease, essential tremor, carpal tunnel syndrome, TMD, Tourette's syndrome, conversion disorder or other neuromuscular movement disorders. It has been found that the prevalence of dystonia is high in individuals with Huntington's disease, where the most common clinical presentations are internal shoulder rotation, sustained fist clenching, knee flexion, and foot inversion. Risk factors for increased dystonia in patients with Huntington's disease include long disease duration and use of antidopaminergic medication.
PSP is frequently misdiagnosed as Parkinson's disease because of the slowed movements and gait difficulty, or as Alzheimer's disease because of the behavioral changes. It is one of a number of diseases collectively referred to as Parkinson plus syndromes. A poor response to levodopa along with symmetrical onset can help differentiate this disease from PD. Also, patients with the Richardson variant tend to have an upright or arched-back posture as opposed to the stooped-forward posture of other Parkinsonian disorders, although PSP-Parkinsonism (see below) may show the stooped posture. Early falls are characteristic, especially with Richardson-syndrome.
Patients with Parkinson's disease exhibit gait characteristics that are markedly different from normal gait. While the list of abnormal gait characteristics given below is the most discussed, it is certainly not exhaustive.
Parkinsonian gait (or festinating gait, from Latin "festinare" [to hurry]) is the type of gait exhibited by patients suffering from Parkinson's disease (PD). This disorder is caused by a deficiency of dopamine in the basal ganglia circuit leading to motor deficits. Gait is one of the most affected motor characteristics of this disorder although symptoms of Parkinson's disease are varied.
Parkinsonian gait is characterized by small shuffling steps and a general slowness of movement (hypokinesia), or even the total loss of movement (akinesia) in the extreme cases. Patients with PD demonstrate reduced stride length and walking speed during free ambulation while double support duration and cadence rate are increased. The patient has difficulty starting, but also has difficulty stopping after starting. This is due to muscle hypertonicity.
Tardive dyskinesia (TD) is a disorder that results in involuntary, repetitive body movements. This may include grimacing, sticking out the tongue or smacking of the lips. Additionally there may be rapid jerking movements or slow writhing movements. In about 20% of people, decreased functioning results.
Tardive dyskinesia occurs in some people as a result of long-term use of neuroleptic medications (antipsychotics, metoclopramide). These medications are usually used for mental illness, but may also be given for gastrointestinal or neurological problems. The condition typically only develops after months to years of use. The diagnosis is based on the symptoms after ruling out other potential causes.
Efforts to prevent the condition include not using or using the lowest possible dose of neuroleptics. Treatment include stopping the neuroleptic medication if possible or switching to clozapine. Other medications such as valbenazine, tetrabenazine, or botulinum toxin may be used to lessen the symptoms. With treatment some see a resolution of symptoms while others do not.
Rates in those on atypical antipsychotics are about 20% while those on typical antipsychotics have rates of about 30%. Risk is greater in older people. The term "tardive dyskinesia" first came into use in 1964.
The disease typically starts in one limb, typically one leg. Progressive dystonia results in clubfoot and tiptoe walking. The symptoms can spread to all four limbs around age 18, after which progression slows and eventually symptoms reach a plateau. There can be regression in developmental milestones (both motor and mental skills) and failure to thrive in the absence of treatment.
In addition, SS is typically characterized by signs of parkinsonism that may be relatively subtle. Such signs may include slowness of movement (bradykinesia), tremors, stiffness and resistance to movement (rigidity), balance difficulties, and postural instability. Approximately 25 percent also have abnormally exaggerated reflex responses (hyperreflexia), particularly in the legs. These symptoms can result in a presentation that is similar in appearance to that of Parkinson's Disease.
Many patients experience improvement with sleep, are relatively free of symptoms in the morning, and develop increasingly severe symptoms as the day progresses (i.e., diurnal fluctuation). Accordingly, this disorder has sometimes been referred to as "progressive hereditary dystonia with diurnal fluctuations." Yet some SS patients do not experience such diurnal fluctuations, causing many researchers to prefer other disease terms.
- Other symptoms - footwear
- excessive wear at toes, but little wear on heels, thus replacement of shoes every college term/semester.
- Other symptoms - handwriting
- near normal handwriting at infants/kindergarten (ages 3–5 school) years.
- poor handwriting at pre-teens (ages 8–11 school) years.
- very poor (worse) handwriting during teen (qv GCSE/A level-public exams) years.
- bad handwriting (worsening) during post-teen (qv university exams) years.
- very bad handwriting (still worsening) during adult (qv post-graduate exams) years.
- worsening pattern of sloppy handwriting best observed by school teachers via termly reports.
- child sufferer displays unhappy childhood facial expressions (depression.?)
Segmental dystonias affect two adjoining parts of the body:
- Hemidystonia affects an arm and foot on one side of the body.
- Multifocal dystonia affects many different parts of the body.
- Generalized dystonia affects most of the body, frequently involving the legs and back.
Machado–Joseph disease (MJD), also known as Machado–Joseph Azorean disease, Machado's disease, Joseph's disease or spinocerebellar ataxia type 3 (SCA3), is a rare autosomal dominantly inherited neurodegenerative disease that causes progressive cerebellar ataxia, which results in a lack of muscle control and coordination of the upper and lower extremities. The symptoms are caused by a genetic mutation that results in an expansion of abnormal "CAG" trinucleotide repeats in the ATXN3 gene that results in an abnormal form of the protein ataxin which causes degeneration of cells in the hindbrain. Some symptoms, such as clumsiness and rigidity, make MJD commonly mistaken for drunkenness or Parkinson's disease.
Machado–Joseph disease is a type of spinocerebellar ataxia and is the most common cause of autosomal-dominant ataxia. MJD causes ophthalmoplegia and mixed sensory and cerebellar ataxia.
Segawa Syndrome (SS) also known as Dopamine-responsive dystonia (DRD), Segawa's disease, Segawa's dystonia and hereditary progressive dystonia with diurnal fluctuation, is a genetic movement disorder which usually manifests itself during early childhood at around ages 5–8 years (variable start age).
Characteristic symptoms are increased muscle tone (dystonia, such as clubfoot) and Parkinsonian features, typically absent in the morning or after rest but worsening during the day and with exertion. Children with SS are often misdiagnosed as having cerebral palsy. The disorder responds well to treatment with levodopa.
Symptoms typically present in the 3rd or 4th decade of life, but have been seen as early as the age of 14. It presents with torsion dystonia, particularly when presenting at a younger age, which then progresses to parkinsonism with or without ongoing dystonia. Often the two symptoms coexist.The parkinsonian features of x-linked dystonia parkinsonism include festinating gait, bradykinesia, blepharospasm, and postural instability. It often lacks a resting tremor, helping to differentiate it from Parkinson's disease.
Tremor is most commonly classified by clinical features and cause or origin. Some of the better known forms of tremor, with their symptoms, include the following:
- Cerebellar tremor (also known as intention tremor) is a slow, broad tremor of the extremities that occurs at the end of a purposeful movement, such as trying to press a button or touching a finger to the tip of one’s nose. Cerebellar tremor is caused by lesions in or damage to the cerebellum resulting from stroke, tumor, or disease such as multiple sclerosis or some inherited degenerative disorder. It can also result from chronic alcoholism or overuse of some medicines. In classic cerebellar tremor, a lesion on one side of the brain produces a tremor in that same side of the body that worsens with directed movement. Cerebellar damage can also produce a “wing-beating” type of tremor called rubral or Holmes’ tremor — a combination of rest, action, and postural tremors. The tremor is often most prominent when the affected person is active or is maintaining a particular posture. Cerebellar tremor may be accompanied by other manifestations of ataxia, including dysarthria (speech problems), nystagmus (rapid, involuntary rolling of the eyes), gait problems and postural tremor of the trunk and neck. "Titubation" is tremor of the head and is of cerebellar origin.
- Dystonic tremor occurs in individuals of all ages who are affected by dystonia, a movement disorder in which sustained involuntary muscle contractions cause twisting and repetitive motions and/or painful and abnormal postures or positions. Dystonic tremor may affect any muscle in the body and is seen most often when the patient is in a certain position or moves a certain way. The pattern of dystonic tremor may differ from essential tremor. Dystonic tremors occur irregularly and often can be relieved by complete rest. Touching the affected body part or muscle may reduce tremor severity (a geste antagoniste). The tremor may be the initial sign of dystonia localized to a particular part of the body.
- Essential tremor (sometimes called benign essential tremor) is the most common of the more than 20 types of tremor. Although the tremor may be mild and nonprogressive in some people, in others, the tremor is slowly progressive, starting on one side of the body but affecting both sides within 3 years. The hands are most often affected but the head, voice, tongue, legs, and trunk may also be involved. Head tremor may be seen as a vertical or horizontal motion. Essential tremor may be accompanied by mild gait disturbance. Tremor frequency may decrease as the person ages, but the severity may increase, affecting the person’s ability to perform certain tasks or activities of daily living. Heightened emotion, stress, fever, physical exhaustion, or low blood sugar may trigger tremors or increase their severity. Onset is most common after age 40, although symptoms can appear at any age. It may occur in more than one family member. Children of a parent who has essential tremor have a 50 percent chance of inheriting the condition. Essential tremor is not associated with any known pathology.
- Orthostatic tremor is characterized by fast (>12 Hz) rhythmic muscle contractions that occur in the legs and trunk immediately after standing. Cramps are felt in the thighs and legs and the patient may shake uncontrollably when asked to stand in one spot. No other clinical signs or symptoms are present and the shaking ceases when the patient sits or is lifted off the ground. The high frequency of the tremor often makes the tremor look like rippling of leg muscles while standing. Orthostatic tremor may also occur in patients who have essential tremor, and there might be an overlap between these categories of tremor.
- Parkinsonian tremor is caused by damage to structures within the brain that control movement. This resting tremor, which can occur as an isolated symptom or be seen in other disorders, is often a precursor to Parkinson's disease (more than 25 percent of patients with Parkinson’s disease have an associated action tremor). The tremor, which is classically seen as a "pill-rolling" action of the hands that may also affect the chin, lips, legs, and trunk, can be markedly increased by stress or emotion. Onset is generally after age 60. Movement starts in one limb or on one side of the body and usually progresses to include the other side.
- Physiological tremor occurs in every normal individual and has no clinical significance. It is rarely visible and may be heightened by strong emotion (such as anxiety or fear), physical exhaustion, hypoglycemia, hyperthyroidism, heavy metal poisoning, stimulants, alcohol withdrawal or fever. It can be seen in all voluntary muscle groups and can be detected by extending the arms and placing a piece of paper on top of the hands. Enhanced physiological tremor is a strengthening of physiological tremor to more visible levels. It is generally not caused by a neurological disease but by reaction to certain drugs, alcohol withdrawal, or medical conditions including an overactive thyroid and hypoglycemia. It is usually reversible once the cause is corrected. This tremor classically has a frequency of about 10 Hz
- tremor (also called hysterical tremor) can occur at rest or during postural or kinetic movement. The characteristics of this kind of tremor may vary but generally include sudden onset and remission, increased incidence with stress, change in tremor direction and/or body part affected, and greatly decreased or disappearing tremor activity when the patient is distracted. Many patients with psychogenic tremor have a conversion disorder (see Posttraumatic stress disorder) or another psychiatric disease.
- Rubral tremor is characterized by coarse slow tremor which is present at rest, at posture and with intention. This tremor is associated with conditions which affect the red nucleus in the midbrain, classically unusual strokes.
Tremor can result from other conditions as well
- Alcoholism, excessive alcohol consumption, or alcohol withdrawal can kill certain nerve cells, resulting in a tremor known as asterixis. Conversely, small amounts of alcohol may help to decrease familial and essential tremor, but the mechanism behind it is unknown. Alcohol potentiates GABAergic transmission and might act at the level of the inferior olive.
- Tremor in peripheral neuropathy may occur when the nerves that supply the body’s muscles are traumatized by injury, disease, abnormality in the central nervous system, or as the result of systemic illnesses. Peripheral neuropathy can affect the whole body or certain areas, such as the hands, and may be progressive. Resulting sensory loss may be seen as a tremor or ataxia (inability to coordinate voluntary muscle movement) of the affected limbs and problems with gait and balance. Clinical characteristics may be similar to those seen in patients with essential tremor.
- Tobacco withdrawal symptoms include tremor.
- Most of the symptoms can also occur randomly when panicked.
Tremor can be a symptom associated with disorders in those parts of the brain that control muscles throughout the body or in particular areas, such as the hands. Neurological disorders or conditions that can produce tremor include multiple sclerosis, stroke, traumatic brain injury, chronic kidney disease and a number of neurodegenerative diseases that damage or destroy parts of the brainstem or the cerebellum, Parkinson's disease being the one most often associated with tremor. Other causes include the use of drugs (such as amphetamines, cocaine, caffeine, corticosteroids, SSRIs) or alcohol, mercury poisoning, or the withdrawal of drugs such as alcohol or benzodiazepine. Tremors can also be seen in infants with phenylketonuria (PKU), overactive thyroid or liver failure. Tremors can be an indication of hypoglycemia, along with palpitations, sweating and anxiety.
Tremor can also be caused from lack of sleep, lack of vitamins, or increased stress. Deficiencies of magnesium and thiamine have also been known to cause tremor or shaking, which resolves when the deficiency is corrected. See magnesium in biology. Some forms of tremor are inherited and run in families, while others have no known cause. Tremors can also be caused by some spider bites, e.g. the redback spider of Australia.
Characteristics may include a rhythmic shaking in the hands, arms, head, legs, or trunk; shaky voice; and problems holding things such as a fork or pen. Some tremors may be triggered by or become exacerbated during times of stress or strong emotion, when the individual is physically exhausted, or during certain postures or movements.
Tremor may occur at any age but is most common in middle-age and older persons. It may be occasional, temporary, or occur intermittently. Tremor affects men and women equally.
Symptoms categorized as physically visible symptoms include chorea, dystonia, spasticity, and rigidity, all physical symptoms of the body associated with movement disorders. The symptoms accompanying neuroferritinopathy affecting movement are also progressive, becoming more generalized with time. Usually during the first ten years of onset of the disease only one or two limbs are directly affected.
Distinctive symptoms of neuroferritinopathy are chorea, found in 50% of diagnosed patients, dystonia, found in 43% of patients, and parkinsonism, found in 7.5% of patients. Full control of upper limbs on the body generally remains until late onset of the disease. Over time, symptoms seen in a patient can change from one side of the body to the opposite side of the body, jumping from left to right or vice versa. Another route that the physically visible symptoms have been observed to take is the appearance, disappearance, and then reappearance once more of specific symptoms.
While these symptoms are the classic indicators of neuroferritinopathy, symptoms will vary from patient to patient.
Neuroferritinopathy has several distinguishing signs and symptoms. These fall into two categories: diagnostic findings and physically visible symptoms.
X-linked dystonia parkinsonism (XDP), also known as Lubag Syndrome or X-linked Dystonia of Panay, is a rare x-linked progressive movement disorder with high penetrance found almost exclusively in males from the Panay, Philippines. It is characterized by dystonic movements first typically occurring in the 3rd and 4th decade of life. The dystonic movements often either coexist or develop into parkinsonism within 10 years of disease onset.
Blocq's disease was first considered by Paul Blocq (1860–1896), who described this phenomenon as the loss of memory of specialized movements causing the inability to maintain an upright posture, despite normal function of the legs in the bed. The patient is able to stand up, but as soon as the feet are on the ground, the patient cannot hold himself upright nor walk; however when lying down, the subject conserved the integrity of muscular force and the precision of movements of the lower limbs. The motivation of this study came when a fellow student Georges Marinesco (1864) and Paul published a case of parkinsonian tremor (1893) due to a tumor located in the substantia nigra.
In the third paper published by Paul Blocq, he was trying to determine the neurophysiology behind this disease by relating the cerebral cortex (the decision making) and the spinal cord (the decision executer). His hypothesis was that there would exist an inhibitory influence which exerted and influenced the cortical or spinal centers for standing and walking.