Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most individuals with a significant ASD are diagnosed "in utero" or in early childhood with the use of ultrasonography or auscultation of the heart sounds during physical examination.
Some individuals with an ASD have surgical correction of their ASD during childhood. The development of signs and symptoms due to an ASD are related to the size of the intracardiac shunt. Individuals with a larger shunt tend to present with symptoms at a younger age.
Adults with an uncorrected ASD present with symptoms of dyspnea on exertion (shortness of breath with minimal exercise), congestive heart failure, or cerebrovascular accident (stroke). They may be noted on routine testing to have an abnormal chest X-ray or an abnormal ECG and may have atrial fibrillation. If the ASD causes a left-to-right shunt, the pulmonary vasculature in both lungs may appear dilated on chest X-ray, due to the increase in pulmonary blood flow.
Most individuals with an uncorrected secundum ASD do not have significant symptoms through early adulthood. More than 70% develop symptoms by about 40 years of age. Symptoms are typically decreased exercise tolerance, easy fatigability, palpitations, and syncope.
Complications of an uncorrected secundum ASD include pulmonary hypertension, right-sided heart failure, atrial fibrillation or flutter, stroke, and Eisenmenger's syndrome.
While pulmonary hypertension is unusual before 20 years of age, it is seen in 50% of individuals above the age of 40. Progression to Eisenmenger's syndrome occurs in 5 to 10% of individuals late in the disease process.
The annulus of the valve is still in the normal position. The valve leaflets, however, are to a varying degree, attached to the walls and septum of the right ventricle. A subsequent 'atrialization' of a portion of the morphologic right ventricle (which is then contiguous with the right atrium) is seen. This causes the right atrium to be large and the anatomic right ventricle to be small in size.
- S3 heart sound
- S4 heart sound
- Triple or quadruple gallop due to widely split S1 and S2 sounds plus a loud S3 and/or S4
- Systolic murmur of tricuspid regurgitation = Holosystolic or early systolic murmur along the lower left sternal border depending on the severity of the regurgitation
- Right atrial hypertrophy
- Right ventricular conduction defects
- Wolff-Parkinson-White syndrome often accompanies
An enlargement of the aorta may occur; an increased risk of abnormality is seen in babies of women taking lithium during the first trimester of pregnancy (though some have questioned this) and in those with Wolff-Parkinson-White syndrome.
A defect in the ostium primum is occasionally classified as an atrial septal defect, but it is more commonly classified as an atrioventricular septal defect
The ostium primum atrial septal defect (also known as an endocardial cushion defect) is a defect in the atrial septum at the level of the tricuspid and mitral valves. This is sometimes known as an endocardial cushion defect because it often involves the endocardial cushion, which is the portion of the heart where the atrial septum meets the ventricular septum and the mitral valve meets the tricuspid valve.
Endocardial cushion defects are associated with abnormalities of the atrioventricular valves (the mitral valve and the tricuspid valve). These include the cleft mitral valve, and the single atrioventricular valve (a single large, deformed valve that flows into both the right ventricle and the left ventricle).
Endocardial cushion defects are the most common congenital heart defect that is associated with Down's syndrome.
Third-degree atrioventricular block (AV block), also known as complete heart block, is a medical condition in which the impulse generated in the sinoatrial node (SA node) in the atrium of the heart does not propagate to the ventricles.
Because the impulse is blocked, an accessory pacemaker in the lower chambers will typically activate the ventricles. This is known as an "escape rhythm". Since this accessory pacemaker also activates independently of the impulse generated at the SA node, two independent rhythms can be noted on the electrocardiogram (ECG).
- The P waves with a regular P-to-P interval (in other words, a sinus rhythm) represent the first rhythm.
- The QRS complexes with a regular R-to-R interval represent the second rhythm. The PR interval will be variable, as the hallmark of complete heart block is lack of any apparent relationship between P waves and QRS complexes.
Patients with third-degree AV block typically experience severe bradycardia (an abnormally-low measured heart rate), hypotension, and at times, hemodynamic instability.
Junctional ectopic tachycardia (JET) is a rare syndrome of the heart that manifests in patients recovering from heart surgery. It is characterized by cardiac arrhythmia, or irregular beating of the heart, caused by abnormal conduction from or through the atrioventricular node (AV node). In newborns and infants up to 6 weeks old, the disease may also be referred to as His bundle tachycardia.
Chest pain is a major indication of coronary ischemia. If chest pain occurs while exercising, or during sex, but it doesn't persist after rest, it may be coronary ischemia, or what is called, "angina". Some people characterize the pain they feel as though an elephant is sitting on their chest.
Other typical symptoms include diaphoresis which is sweaty palms, and clammy skin, nausea or vomiting, or shortness of breath. Chest pain radiating down the left arm is also a symptom of coronary ischemia and the pain can also be radiating directly to the back in some instances.
Most atypical symptoms are seen in women, diabetics, and the elderly more than anyone else.
These type of symptoms include stomach pain, and simply fatigue. It can also include heartburn and anxiety.
If no symptoms are present it is called silent ischemia.
Trifascicular block is a problem with the electrical conduction of the heart. It is diagnosed on an electrocardiogram (ECG/EKG) and has three features:
- prolongation of the (first degree AV block)
- right bundle branch block
- either left anterior fascicular block or left posterior fascicular block.
A slow rhythm (less than 60 beats/min), is labelled bradycardia. This may be caused by a slowed signal from the sinus node (sinus bradycardia), a pause in the normal activity of the sinus node (sinus arrest), or by blocking of the electrical impulse on its way from the atria to the ventricles (AV block or heart block). Heart block comes in varying degrees and severity. It may be caused by reversible poisoning of the AV node (with drugs that impair conduction) or by irreversible damage to the node. Bradycardias may also be present in the normally functioning heart of endurance athletes or other well-conditioned persons. Bradycardia may also occur in some types of seizures.
Chest pain is one of the common symptoms of acute pericarditis. It is usually of sudden onset, occurring in the anterior chest and often has a sharp quality that worsens with breathing in or coughing, due to inflammation of the pleural surface at the same time. The pain may be reduced with sitting up and leaning forward while worsened with lying down, and also may radiate to the back, to one or both trapezius ridges. However, the pain can also be dull and steady, resembling the chest pain in an acute myocardial infarction. As with any chest pain, other causes must also be ruled out, such as GERD, pulmonary embolism, muscular pain, etc.
A pericardial friction rub is a very specific sign of acute pericarditis, meaning the presence of this sign invariably indicates presence of disease. However, absence of this sign does not rule out disease. This rub can be best heard by the diaphragm of the stethoscope at the left sternal border arising as a squeaky or scratching sound, resembling the sound of leather rubbing against each other. This sound should be distinguished from the sound of a murmur, which is similar but sounds more like a "swish" sound than a scratching sound. The pericardial rub is said to be generated from the friction generated by the two inflamed layers of the pericardium; however, even a large pericardial effusion does not necessarily present a rub. The rub is best heard during the maximal movement of the heart within the pericardial sac, namely, during atrial systole, ventricular systole, and the filling phase of early ventricular diastole.
Fever may be present since this is an inflammatory process.
Each heart beat originates as an electrical impulse from a small area of tissue in the right atrium of the heart called the sinus node or Sino-atrial node or SA node. The impulse initially causes both atria to contract, then activates the atrioventricular (or AV) node, which is normally the only electrical connection between the atria and the ventricles (main pumping chambers). The impulse then spreads through both ventricles via the Bundle of His and the Purkinje fibres causing a synchronised contraction of the heart muscle and, thus, the pulse.
In adults the normal resting heart rate ranges from 60 to 90 beats per minute. The resting heart rate in children is much faster. In athletes, however, the resting heart rate can be as slow as 40 beats per minute, and be considered as normal.
The term sinus arrhythmia refers to a normal phenomenon of alternating mild acceleration and slowing of the heart rate that occurs with breathing in and out. It is usually quite pronounced in children and steadily decreases with age. This can also be present during meditation breathing exercises that involve deep inhaling and breath holding patterns.
First-degree atrioventricular block (AV block), or PR prolongation, is a disease of the electrical conduction system of the heart in which the PR interval is lengthened beyond 0.20 seconds.
In first-degree AV block, the impulse conducting from atria to ventricles through the atrioventricular node (AV node) is delayed and travels slower than normal. It has a prevalence in the normal (young adult) population of 0.65-1.1% and the incidence is 0.13 per 1000 persons.
Most people with Wenckebach (Type I Mobitz) do not show symptoms. However, those that do usually display one or more of the following:
- Light-headedness
- Dizziness
- Syncope (fainting)
Junctional ectopic tachycardia derives its name from the problem it causes. "Junctional" is used as the abnormal tissue driving the ventricular rate is located close junction between the atria and ventricles, known as the AV node. Ectopic (from the Greek "ektopos", meaning "out of place") refers to the fact that the ventricles are being triggered by tissue that is not the normal pacemaker tissue within the heart. Tachycardia (from the Greek "takhys", meaning "swift", and "kardia", meaning heart) means a swift heart rate.
By this definition, junctional ectopic tachycardia is an abnormally swift heart rhythm due to cells firing within the heart near the AV node.
Trifascicular block is important to diagnose because it is difficult to tell based on the surface ECG whether the prolonged PR interval is due to disease in the AV node or due to diffuse distal conduction system disease.
- In the former case, if the block at the AV node level becomes complete, the escape rhythm will originate from the bundle of His, which typically will generate heart rates in the 40s, allowing the individual to survive and complain of symptoms of fatigue or near-syncope to their physician.
- In the latter case, however, because the conduction system disease is diffuse in nature, the escape rhythm may be fascicular or ventricular, which may be at rates that are life-threateningly low.
Second-degree atrioventricular block (AV block) is a disease of the electrical conduction system of the heart. It is a conduction block between the atria and ventricles. The presence of second-degree AV block is diagnosed when one or more (but not all) of the atrial impulses fail to conduct to the ventricles due to impaired conduction. It is classified as a block of the AV node and is categorized in between first-degree (slowed conduction) and third degree blocks (complete block).
Acute pericarditis is a type of pericarditis (inflammation of the sac surrounding the heart, the pericardium) usually lasting less than 6 weeks. It is by far the most common condition affecting the pericardium.
The most common causes of first-degree heart block are an AV nodal disease, enhanced vagal tone (for example in athletes), myocarditis, acute myocardial infarction (especially acute inferior MI), electrolyte disturbances and medication. The drugs that most commonly cause first-degree heart block are those that increase the refractory time of the AV node, thereby slowing AV conduction. These include calcium channel blockers, beta-blockers, cardiac glycosides, and anything that increases cholinergic activity such as cholinesterase inhibitors. Digitalis is a sodium/potassium ATPase inhibitor and also prolongs AV conduction.
Many conditions can cause third-degree heart block, but the most common cause is coronary ischemia. Progressive degeneration of the electrical conduction system of the heart can lead to third-degree heart block. This may be preceded by first-degree AV block, second-degree AV block, bundle branch block, or bifascicular block. In addition, acute myocardial infarction may present with third-degree AV block.
An "inferior wall myocardial infarction" may cause damage to the AV node, causing third-degree heart block. In this case, the damage is usually transitory. Studies have shown that third-degree heart block in the setting of an inferior wall myocardial infarction typically resolves within 2 weeks. The escape rhythm typically originates in the AV junction, producing a narrow complex escape rhythm.
An "anterior wall myocardial infarction" may damage the distal conduction system of the heart, causing third-degree heart block. This is typically extensive, permanent damage to the conduction system, necessitating a permanent pacemaker to be placed. The escape rhythm typically originates in the ventricles, producing a wide complex escape rhythm.
Third-degree heart block may also be congenital and has been linked to the presence of lupus in the mother. It is thought that maternal antibodies may cross the placenta and attack the heart tissue during gestation. The cause of congenital third-degree heart block in many patients is unknown. Studies suggest that the prevalence of congenital third-degree heart block is between 1 in 15,000 and 1 in 22,000 live births.
Hyperkalemia in those with previous cardiac disease and Lyme disease can also result in third-degree heart block.
Bradycardia is a condition wherein an individual has a slow heart rate, typically defined as a heart rate of under 60 beats per minute (BPM) in adults. Bradycardia typically does not cause symptoms until the rate drops below 50 BPM. When symptomatic, it may cause fatigue, weakness, dizziness, sweating, and at very low rates, fainting.
During sleep, a slow heartbeat with rates around 40–50 BPM is common, and is considered normal. Highly trained athletes may also have athletic heart syndrome, a very slow resting heart rate that occurs as a sport adaptation and helps prevent tachycardia during training.
The term relative bradycardia is used in explaining a heart rate that, although not actually below 60 BPM, is still considered too slow for the individual's current medical condition.
Atrioventricular block (AV block) is a type of heart block in which the conduction between the atria and ventricles of the heart is impaired. Under normal conditions, the sinoatrial node (SA node) in the atria sets the pace for the heart, and these impulses travel down to the ventricles. In an AV block, this message does not reach the ventricles or is impaired along the way. The ventricles of the heart have their own pacing mechanisms, which can maintain a lowered heart rate in the absence of SA stimulation.
The causes of pathological AV block are varied and include ischaemia, infarction, fibrosis or drugs, and the blocks may be complete or may only impair the signaling between the SA and AV nodes. Certain AV blocks can also be found as normal variants, such as in athletes or children, and are benign. Strong vagal stimulation may also produce AV block. The cholinergic receptor types affected are the muscarinic receptors.
There are three types:
- First-degree atrioventricular block - The heart’s electrical signals move between the upper and lower chambers of the heart.PR interval greater than 0.20sec.
- Second-degree atrioventricular block - The heart’s electrical signals between the upper and lower signals of the heart are slowed by a much greater rate than in first-degree atrioventricular block. Type 1 (a.k.a. Mobitz 1, Wenckebach): Progressive prolongation of PR interval with dropped beats (the PR interval gets longer and longer; finally one beat drops) . Type 2 (a.k.a. Mobitz 2, Hay): PR interval remains unchanged prior to the P wave which suddenly fails to conduct to the ventricles.
- Mobitz I is characterized by a reversible block of the AV node. When the AV node is severely blocked, it fails to conduct an impulse. Mobitz I is a progressive failure. Some patients are asymptomatic; those who have symptoms respond to treatment effectively. There is low risk of the AV block leading to heart attack. Mobitz II is characterized by a failure of the His-Purkinje cells resulting in the lack of a supra ventricular impulse. These cardiac His-Purkinje cells are responsible for the rapid propagation in the heart. Mobitz II is caused by a sudden and unexpected failure of the His-Purkinje cells. The risks and possible effects of Mobitz II are much more severe than Mobitz I in that it can lead to severe heart attack.
- Third-degree atrioventricular block - No association between P waves and QRS complexes. The heart’s electrical signals are slowed to a complete halt. This means that none of the signals reach either the upper or lower chambers causing a complete blockage of the ventricles and can result in cardiac arrest. Third-degree atrioventricular block is the most severe of the types of heart ventricle blockages. Persons suffering from symptoms of third-degree heart block need emergency treatment including but not limited to a pacemaker.
In order to differentiate between the different degrees of the atrioventricular block (AV block), the First-Degree AV block occurs when an electrocardiogram (ECG) reads a PR interval that is more than 200 msec. This degree is typically asymptomatic and is only found through an ECG reading. Second-Degree AV block, although typically asymptomatic, has early signs that can be detected or are noticeable such as irregular heartbeat or a syncope. A Third-Degree AV block, has noticeable symptoms that present itself as more urgent such as: dizziness, fatigue, chest pain, pre syncope, or syncope.
Laboratory diagnosis for AV blocks include electrolyte, drug level and cardiac enzyme level tests. A clinical evaluation also looks at infection, myxedema, or connective tissue disease studies. In order to properly diagnose a patient with AV block, an electrocardiographic recording must be completed (ECG). Based on the P waves and QRS complexes that can be evaluated from these readings, that relationship will be the standardized test if an AV block is present or not. In order to identify this block based on the readings the following must occur: multiple ECG recordings, 24-hour Holter monitoring, and implant loop recordings. Other examinations for the detection of an AV block include electrophysiologic testing, echocardiography, and exercise.
Management includes a form of pharmacologic therapy that administers anticholinergic agents and is dependent upon the severity of a blockage. In severe cases or emergencies, atropine administration or isoproterenol infusion would allow for temporary relief if bradycardia is the cause for the blockage, but if His-Purkinje system is the result of the AV block then pharmacologic therapy is not recommended.
People with WPW are usually asymptomatic when not having a fast heart rate. However, individuals may experience palpitations, dizziness, shortness of breath, or infrequently syncope (fainting or near fainting) during episodes of supraventricular tachycardia. The telltale "delta wave" may sometimes be seen on an electrocardiogram (ECG/EKG).