Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Osteomalacia is a generalized bone condition in which there is inadequate mineralization of the bone. Many of the effects of the disease overlap with the more common osteoporosis, but the two diseases are significantly different. There are two main causes of osteomalacia:
1. insufficient calcium absorption from the intestine because of lack of dietary calcium or a deficiency of, or resistance to, the action of vitamin D
2. phosphate deficiency caused by increased renal losses.
Symptoms:
Osteomalacia in adults starts insidiously as aches and pains in the lumbar (lower back) region and thighs before spreading to the arms and ribs. The pain is symmetrical, non-radiating and accompanied by sensitivity in the involved bones. Proximal muscles are weak, and there is difficulty in climbing up stairs and getting up from a squatting position.
As a result of demineralization, the bones become less rigid. Physical signs include deformities like triradiate pelvis and lordosis. The patient has a typical "waddling" gait. However, these physical signs may derive from a previous osteomalacial state, since bones do not regain their original shape after they become deformed.
Pathologic fractures due to weight bearing may develop. Most of the time, the only alleged symptom is chronic fatigue, while bone aches are not spontaneous but only revealed by pressure or shocks.It differs from renal osteodystrophy, where the latter shows hyperphosphatemia.
The causes of adult osteomalacia are varied, but ultimately result in a vitamin D deficiency:
Signs and symptoms of rickets can include bone tenderness, and a susceptibility for bone fractures particularly greenstick fractures. Early skeletal deformities can arise in infants such as soft, thinned skull bones – a condition known as craniotabes which is the first sign of rickets; skull bossing may be present and a delayed closure of the fontanelles.
Young children may have bowed legs and thickened ankles and wrists; older children may have knock knees. Spinal curvatures of kyphoscoliosis or lumbar lordosis may be present. The pelvic bones may be deformed. A condition known as rachitic rosary can result as the thickening caused by nodules forming on the costochondral joints. This appears as a visible bump in the middle of each rib in a line on each side of the body. This somewhat resembles a rosary, giving rise to its name. The deformity of a pigeon chest may result in the presence of Harrison's groove.
Hypocalcemia, a low level of calcium in the blood can result in tetany – uncontrolled muscle spasms. Dental problems can also arise.
An X-ray or radiograph of an advanced sufferer from rickets tends to present in a classic way: the bowed legs (outward curve of long bone of the legs) and a deformed chest. Changes in the skull also occur causing a distinctive "square headed" appearance known as "caput quadratum". These deformities persist into adult life if not treated. Long-term consequences include permanent curvatures or disfiguration of the long bones, and a curved back.
Rickets is a condition that results in weak or soft bones in children. Symptoms include bowed legs, stunted growth, bone pain, large forehead, and trouble sleeping. Complications may include bone fractures, muscle spasms, an abnormally curved spine, or intellectual disability.
The most common cause is vitamin D deficiency. This can result from eating a diet without enough vitamin D, dark skin, too little sun exposure, exclusive breastfeeding without vitamin D supplementation, celiac disease, and certain genetic conditions. Other factors may include not enough calcium or phosphorus. The underlying mechanism involves insufficient calcification of the growth plate. Diagnosis is generally based on blood tests finding a low calcium, low phosphorus, and a high alkaline phosphatase together with X-rays.
Prevention includes vitamin D supplements for exclusively breastfeed babies. Treatment depends on the underlying cause. If due to a lack of vitamin D, treatment is usually with vitamin D and calcium. This generally results in improvements within a few weeks. Bone deformities may also improve over time. Occasionally surgery may be done to fix bone deformities. Genetic forms of the disease typically require specialized treatment.
Rickets occurs relatively commonly in the Middle East, Africa, and Asia. It is generally uncommon in the United States and Europe, except among certain minority groups. It begins in childhood, typically between the ages of 3 and 18 months old. Rates of disease are equal in males and females. Cases of what is believed to have been rickets has been described since the 1st century. The disease was common up into the 20th century. Early treatments included the use of cod liver oil.
The presentation of x-linked hypophosphatemia is consistent with:
- Bone pain
- Skeletal abnormalities
- Osteoarthritis
- Hearing loss (less common)
Dental Presentations:
- Large dental pulp chamber
- Interglobular dentin
- Dental abcesses
Adult patients have worsening myalgias, bone pains and fatigue which are followed by recurrent fractures. Children present with difficulty in walking, stunted growth and deformities of the skeleton (features of rickets).
Adult hypophosphatasia can be associated with rickets, premature loss of deciduous teeth, or early loss of adult dentation followed by relatively good health. Osteomalacia results in painful feet due to poor healing of metatarsal stress fractures. Discomfort in the thighs or hips due to femoral pseudofractures can be distinguished from other types of osteomalacia by their location in the lateral cortices of the femora.
Some patients suffer from calcium pyrophosphate dihydrate crystal depositions with occasional attacks of arthritis (pseudogout), which appears to be the result of elevated endogenous inorganic pyrophosphate (PPi) levels. These patients may also suffer articular cartilage degeneration and pyrophosphate arthropathy. Radiographs reveal pseudofractures in the lateral cortices of the proximal femora and stress fractures, and patients may experience osteopenia, chondrocalcinosis, features of pyrophosphate arthropathy, and calcific periarthritis.
Odontohypophosphatasia is present when dental disease is the only clinical abnormality, and radiographic and/or histologic studies reveal no evidence of rickets or osteomalacia. Although hereditary leukocyte abnormalities and other disorders usually account for this condition, odontohypophosphatasia may explain some “early-onset periodontitis” cases.
Infantile hypophosphatasia presents in the first 6 months of life, with the onset of poor feeding and inadequate weight gain. Clinical manifestations of rickets often appear at this time. Although cranial sutures appear to be wide, this reflects hypomineralization of the skull, and there is often “functional” craniosynostosis. If the patient survives infancy, these sutures can permanently fuse. Defects in the chest, such as flail chest resulting from rib fractures, lead to respiratory compromise and pneumonia. Elevated calcium in the blood (hypercalcemia) and urine (hypercalcenuria) are also common, and may explain the renal problems and recurrent vomiting seen is this disease.
Radiographic features in infants are generally less severe than those seen in perinatal hypophosphatasia. In the long bones, there is an abrupt change from a normal appearance in the shaft (diaphysis) to uncalcified regions near the ends (metaphysis), which suggests the occurrence of an abrupt metabolic change. In addition, serial radiography studies suggest that defects in skeletal mineralization (i.e. rickets) persist and become more generalized. Mortality is estimated to be 50% in the first year of life.
X-linked hypophosphatemia (XLH), also called X-linked dominant hypophosphatemic rickets, X-linked vitamin d-resistant rickets, is an X-linked dominant form of rickets (or osteomalacia) that differs from most cases of rickets in that ingestion of vitamin D is relatively ineffective. It can cause bone deformity including short stature and genu varum (bow leggedness). It is associated with a mutation in the PHEX gene sequence (Xp.22) and subsequent inactivity of the PHEX protein. The prevalence of the disease is 1:20000. The leg deformity can be treated with Ilizarov frames and CAOS surgery.
Despite this excess bone formation, people with osteopetrosis tend to have bones that are more brittle than normal. Mild osteopetrosis may cause no symptoms, and present no problems.
However, serious forms can result in...
- Stunted growth, deformity, and increased likelihood of fractures
- Patients suffer anemia, recurrent infections, and hepatosplenomegaly due to bone expansion leading to bone marrow narrowing and extramedullary hematopoiesis
- It can also result in blindness, facial paralysis, and deafness, due to the increased pressure put on the nerves by the extra bone
- Abnormal cortical bone morphology
- Abnormal form of the vertebral bodies
- Abnormality of temperature regulation
- Abnormality of the ribs
- Abnormality of vertebral epiphysis morphology
- Bone pain
- Cranial nerve paralysis
- Craniosynostosis
- Hearing impairment
- Hypocalcemia
Renal osteodystrophy may exhibit no symptoms; if it does show symptoms, they include:
- Bone pain
- Joint pain
- Bone deformation
- Bone fracture
- The broader concept of chronic kidney disease-mineral and bone disorder (CKD-MBD) is not only associated with fractures but also with cardiovascular calcification, poor quality of life and increased morbidity and mortality in CKD patients (the so-called bone-vascular axis). These clinical consequences are acquiring such an importance that scientific working groups (such as the ERA-EDTA CKD-MBD Working Group) or international initiatives are trying to promote research in the field including basic, translational and clinical research.
An endocrine bone disease is a bone disease associated with a disorder of the endocrine system. An example is osteitis fibrosa cystica.
Autosomal Dominant Osteopetrosis(ADO), also known as Albers-Schonberg disease. Most do not know they have this disorder because most individuals do not show any symptoms. However, the ones that do show symptoms, they will typically have a curvature of the spin(scoliosis), and multiple bone fractures. There are two types of adult osteopetrosis based on the basis of radiographic, biochemical, and clinical features.
Many patients will have bone pains. The defects are very common and include neuropathies due to the cranial nerve entrapment, osteoarthritis, carpal tunnel syndrome. About 40% of patients will experience recurrent fractures of their bones. 10% of patients will have osteomyelitis of the mandible.
To confirm the diagnosis, renal osteodystrophy must be characterized by determining bone turnover, mineralization, and volume (TMV system) (bone biopsy). All forms of renal osteodystrophy should also be distinguished from other bone diseases which may equally result in decreased bone density (related or unrelated to CKD):
- osteoporosis
- osteopenia
- osteomalacia
- brown tumor should be considered as the top-line diagnosis if a mass-forming lesion is present.
Oncogenic osteomalacia or tumor-induced osteomalacia, also known as oncogenic hypophosphatemic osteomalacia or oncogenic osteomalacia, is an uncommon disorder resulting in increased renal phosphate excretion, hypophosphatemia and osteomalacia. It may be caused by a phosphaturic mesenchymal tumor.
Osteoporosis is due to causal factors like atrophy of disuse and gonadal deficiency. Hence osteoporosis is common in post menopausal women and in men above 50 yrs. Hypercorticism may also be causal factor, as osteoporosis may be seen as a feature of Cushing's syndrome.
Metabolic bone disease is an umbrella term referring to abnormalities of bones caused by a broad spectrum of disorders.
Most commonly these disorders are caused by abnormalities of minerals such as calcium, phosphorus, magnesium or vitamin D leading to dramatic clinical disorders that are commonly reversible once the underlying defect has been treated. These disorders are to be differentiated from a larger group of genetic bone disorders where there is a defect in a specific signaling system or cell type that causes the bone disorder. There may be overlap. For example, genetic or hereditary hypophosphatemia may cause the metabolic bone disorder osteomalacia. Although there is currently no treatment for the genetic condition, replacement of phosphate often corrects or improves the metabolic bone disorder.
Osteoporosis itself has no symptoms; its main consequence is the increased risk of bone fractures. Osteoporotic fractures occur in situations where healthy people would not normally break a bone; they are therefore regarded as fragility fractures. Typical fragility fractures occur in the vertebral column, rib, hip and wrist.
Fractures are the most dangerous aspect of osteoporosis. Debilitating acute and chronic pain in the elderly is often attributed to fractures from osteoporosis and can lead to further disability and early mortality. These fractures may also be asymptomatic. The most common osteoporotic fractures are of the wrist, spine, shoulder and hip. The symptoms of a vertebral collapse ("compression fracture") are sudden back pain, often with radicular pain (shooting pain due to nerve root compression) and rarely with spinal cord compression or cauda equina syndrome. Multiple vertebral fractures lead to a stooped posture, loss of height, and chronic pain with resultant reduction in mobility.
Fractures of the long bones acutely impair mobility and may require surgery. Hip fracture, in particular, usually requires prompt surgery, as serious risks are associated with it, such as deep vein thrombosis and pulmonary embolism, and increased mortality.
Fracture risk calculators assess the risk of fracture based upon several criteria, including BMD, age, smoking, alcohol usage, weight, and gender. Recognized calculators include FRAX and Dubbo.
The term "established osteoporosis" is used when a broken bone due to osteoporosis has occurred. Osteoporosis is a part of frailty syndrome.
Pathologic fractures in children and adolescents can result from a diverse array of disorders namely; metabolic, endocrine, neoplastic, infectious, immunologic, and genetic skeletal dysplasias.
- Osteogenesis imperfecta
- Primary hyperparathyroidism
- Simple bone cyst
- Aneurismal bone cyst
- Disuse osteoporosis
- Chronic osteomyelitis
- Osteogenesis imperfecta
- Rickets
- Renal osteodystrophy
- Malignant infantile osteopetrosis
- juvenile osteoporosis
- juvenile rheumatoid arthritis
In circumstances where other pathologies are excluded (for example, cancer), a pathologic fracture is diagnostic of osteoporosis irrespective of bone mineral density.
Fibrous dysplasia is a mosaic disease that can involve any part or combination of the craniofacial, axillary, and/or appendicular skeleton. The type and severity of the complications therefore depend on the location and extent of the affected skeleton. The clinical spectrum is very broad, ranging from an isolated, asymptomatic monostotic lesion discovered incidentally, to severe disabling disease involving practically the entire skeleton and leading to loss of vision, hearing, and/or mobility.
Individual bone lesions typically manifest during the first few years of life and expand during childhood. The vast majority of clinically significant bone lesions are detectable by age 10 years, with few new and almost no clinically significant bone lesions appearing after age 15 years. Total body scintigraphy is useful to identify and determine the extent of bone lesions, and should be performed in all patients with suspected fibrous dysplasia.
Children with fibrous dysplasia in the appendicular skeleton typically present with limp, pain, and/or pathologic fractures. Frequent fractures and progressive deformity may lead to difficulties with ambulation and impaired mobility. In the craniofacial skeleton, fibrous dysplasia may present as a painless “lump” or facial asymmetry. Expansion of craniofacial lesions may lead to progressive facial deformity. In rare cases patients may develop vision and/or hearing loss due to compromise of the optic nerves and/or auditory canals, which is more common in patients with McCune-Albright syndrome associated growth hormone excess. Fibrous dysplasia commonly involves the spine, and may lead to scoliosis, which in rare instances may be severe. Untreated, progressive scoliosis is one of the few features of fibrous dysplasia that can lead to early fatality.
Bone pain is a common complication of fibrous dysplasia. It may present at any age, but most commonly develops during adolescence and progresses into adulthood.
Bone marrow stromal cells in fibrous dysplasia produce excess amounts of the phosphate-regulating hormone fibroblast growth factor-23 (FGF23), leading to loss of phosphate in the urine. Patients with hypophosphatemia may develop rickets/osteomalacia, increased fractures, and bone pain.
Collagen quantity is sufficient but is not of a high enough quality
- Bones fracture easily, especially before puberty
- Short stature, spinal curvature, and barrel-shaped rib cage
- Bone deformity is mild to moderate
- Early loss of hearing
Similar to Type I, Type IV can be further subclassified into types IVA and IVB characterized by absence (IVA) or presence (IVB) of dentinogenesis imperfecta.
Collagen improperly formed, enough collagen is made but it is defective.
- Bones fracture easily, sometimes even before birth
- Bone deformity, often severe
- Respiratory problems possible
- Short stature, spinal curvature and sometimes barrel-shaped rib cage
- Triangular face
- Loose joints (double-jointed)
- Poor muscle tone in arms and legs
- Discolouration of the sclera (the 'whites' of the eyes are blue)
- Early loss of hearing possible
Type III is distinguished among the other classifications as being the "progressive deforming" type, wherein a neonate presents with mild symptoms at birth and develops the aforementioned symptoms throughout life. Lifespans may be normal, albeit with severe physical handicapping.
Fibrous dysplasia is a disorder where normal bone and marrow is replaced with fibrous tissue, resulting in formation of bone that is weak and prone to expansion. As a result, most complications result from fracture, deformity, functional impairment, and pain. Disease occurs along a broad clinical spectrum ranging from asymptomatic, incidental lesions to severe disabling disease. Disease can affect one bone (monostotic) or multiple (polyostotic), and may occur in isolation or in combination with cafe-au-lait skin macules and hyperfunctioning endocrinopathies, termed McCune-Albright syndrome. More rarely, fibrous dysplasia may be associated with intramuscular myxomas, termed Mazabraud's syndrome. Fibrous dysplasia is very rare, and there is no known cure. Fibrous dysplasia is not a form of cancer.