Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most common first sign of MSA is the appearance of an "akinetic-rigid syndrome" (i.e. slowness of initiation of movement resembling Parkinson's disease) found in 62% at first presentation. Other common signs at onset include problems with balance (cerebellar ataxia) found in 22% at first presentation, followed by genito-urinary problems (9%). For men, the first sign can be erectile dysfunction (inability to achieve or sustain an erection). Women have also reported reduced genital sensitivity. Both men and women often experience problems with their bladders including urgency, frequency, incomplete bladder emptying, or an inability to pass urine (retention). About 1 in 5 MSA patients will fall in their first year of disease.
MSA is characterized by a combination of the following, which can be present in any combination:
- autonomic dysfunction
- parkinsonism (muscle rigidity +/ tremor and slow movement)
- ataxia (Poor coordination / unsteady walking)
A variant with combined features of MSA and Lewy body dementia may also exist. There have also been occasional instances of frontotemporal lobar degeneration associated with MSA.
Spinocerebellar ataxia (SCA) is one of a group of genetic disorders characterized by slowly progressive incoordination of gait and is often associated with poor coordination of hands, speech, and eye movements. A review of different clinical features among SCA subtypes was recently published describing the frequency of non-cerebellar features, like parkinsonism, chorea, pyramidalism, cognitive impairment, peripheral neuropathy, seizures, among others. As with other forms of ataxia, SCA frequently results in atrophy of the cerebellum, loss of fine coordination of muscle movements leading to unsteady and clumsy motion, and other symptoms.
The symptoms of an ataxia vary with the specific type and with the individual patient. In general, a person with ataxia retains full mental capacity but progressively loses physical control.
Symptoms of MJD are memory deficits, spasticity, difficulty with speech and swallowing, weakness in arms and legs, clumsiness, frequent urination and involuntary eye movements. Symptoms can begin in early adolescence and they get worse over time. Eventually, MJD leads to paralysis; however, intellectual functions usually remain the same.
In contrast to amyotrophic lateral sclerosis or primary lateral sclerosis, PMA is distinguished by the "absence" of:
- brisk reflexes
- spasticity
- Babinski's sign
- Emotional lability
OPCA is characterized by progressive cerebellar ataxia, leading to clumsiness in body movements, veering from midline when walking, wide-based stance, and falls without signs of paralysis or weakness. Clinical presentation can vary greatly between patients, but mostly affects speech, balance and walking. Other possible neurological problems include spasmodic dysphonia, hypertonia, hyperreflexia, rigidity, dysarthria, dysphagia and neck dystonic posture.
As a result of lower motor neurone degeneration, the symptoms of PMA include:
- atrophy
- fasciculations
- muscle weakness
Some patients have symptoms restricted only to the arms or legs (or in some cases just one of either). These cases are referred to as "Flail Arm" (FA) or "Flail Leg" (FL) and are associated with a better prognosis.
Spinocerebellar ataxia (SCA), also known as spinocerebellar atrophy or spinocerebellar degeneration, is a progressive, degenerative, genetic disease with multiple types, each of which could be considered a disease in its own right. An estimated 150,000 people in the United States have a diagnosis of spinocerebellar ataxia at any given time. SCA is hereditary, progressive, degenerative, and often fatal. There is no known effective treatment or cure. SCA can affect anyone of any age. The disease is caused by either a recessive or dominant gene. In many cases people are not aware that they carry a relevant gene until they have children who begin to show signs of having the disorder.
Olivopontocerebellar atrophy (OPCA) is the degeneration of neurons in specific areas of the brain – the cerebellum, pons, and inferior olives. OPCA is present in several neurodegenerative syndromes, including inherited and non-inherited forms of ataxia (such as the hereditary spinocerebellar ataxia known as Machado–Joseph disease) and multiple system atrophy (MSA), with which it is primarily associated.
OPCA may also be found in the brains of individuals with prion disorders and inherited metabolic diseases. The characteristic areas of brain damage that indicate OPCA can be seen by imaging the brain using CT scans or MRI studies.
The term was originally coined by Joseph Jules Dejerine and André Thomas.
Machado–Joseph disease (MJD), also known as Machado–Joseph Azorean disease, Machado's disease, Joseph's disease or spinocerebellar ataxia type 3 (SCA3), is a rare autosomal dominantly inherited neurodegenerative disease that causes progressive cerebellar ataxia, which results in a lack of muscle control and coordination of the upper and lower extremities. The symptoms are caused by a genetic mutation that results in an expansion of abnormal "CAG" trinucleotide repeats in the ATXN3 gene that results in an abnormal form of the protein ataxin which causes degeneration of cells in the hindbrain. Some symptoms, such as clumsiness and rigidity, make MJD commonly mistaken for drunkenness or Parkinson's disease.
Machado–Joseph disease is a type of spinocerebellar ataxia and is the most common cause of autosomal-dominant ataxia. MJD causes ophthalmoplegia and mixed sensory and cerebellar ataxia.
Parkinson-plus syndromes, also known as disorders of multiple system degeneration, is a group of neurodegenerative diseases featuring the classical features of Parkinson's disease (tremor, rigidity, akinesia/bradykinesia, and postural instability) with additional features that distinguish them from simple idiopathic Parkinson's disease (PD). Some consider Alzheimer's disease to be in this group. Parkinson-plus syndromes are either inherited genetically or occur sporadically.
The atypical parkinsonian or Parkinson-plus syndromes are often difficult to differentiate from PD and each other. They include multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Dementia with Lewy bodies (DLB), may or may not be part of the PD spectrum, but it is increasingly recognized as the second-most common type of neurodegenerative dementia after Alzheimer's disease. These disorders are currently lumped into two groups, the synucleinopathies and the tauopathies. They may coexist with other pathologies.
Additional Parkinson-plus syndromes include Pick's disease and olivopontocerebellar atrophy. The latter is characterized by ataxia and dysarthria, and may occur either as an inherited disorder or as a variant of multiple system atrophy. MSA is also characterized by autonomic failure, formerly known as Shy–Drager syndrome.
Clinical features that distinguish Parkinson-plus syndromes from idiopathic PD include symmetrical onset, a lack of or irregular resting tremor, and a reduced response to dopaminergic drugs (including levodopa). Additional features include bradykinesia, early-onset postural instability, increased rigidity in axial muscles, dysautonomia, alien limb syndrome, supranuclear gaze palsy, apraxia, involvement of the cerebellum including the pyramidal cells, and in some instances significant cognitive impairment.
Neuropathy disorders usually have onset in childhood or young adulthood. Motor symptoms seem to be more predominant that sensory symptoms. Symptoms of these disorders include: fatigue, pain, lack of balance, lack of feeling, lack of reflexes, and lack of sight and hearing, which result from muscle atrophy. Patients can also suffer from high arched feet, hammer toes, foot drop, foot deformities, and scoliosis. These symptoms are a result of severe muscular weakness and atrophy. In patients suffering from demyelinating neuropathy, symptoms are due to slow nerve conduction velocities, however people with axonal degradation have average to normal nerve conduction velocities.
Onset usually occurs within the first two decades of life, commonly in the teenage years or the twenties. Life expectancy is normal. High arch of the foot (pes cavus) is common. Patients also have trouble controlling their hands, due to muscle loss on the thumb side of the index finger and palm below the thumb. It is rare for a person with this disorder to lose the ability to walk, though changes in gait may occur later in life.
Frequency of this disorder is unknown.
In an individual with dHMN V, electromyography will show pure motor neuropathy, patterns of weakness without upper motor neuron damage, in the hands. Tendon reflexes will also appear normal. Clinical, electrophysiological, and pathological testing will show a lack of damage to sensory neurons, differentiating this disease from CMT.
Based on the type of muscles affected, spinal muscular atrophies can be divided into:
- "Proximal spinal muscular atrophies", i.e., conditions that affect primarily proximal muscles;
- "Distal spinal muscular atrophies" (which significantly overlap with distal hereditary motor neuronopathies) where they affect primarily distal muscles.
When taking into account prevalence, spinal muscular atrophies are traditionally divided into:
- "Autosomal recessive proximal spinal muscular atrophy", responsible for 90-95% of cases and usually called simply "spinal muscular atrophy" (SMA) – a disorder associated with a genetic mutation on the "SMN1" gene on chromosome 5q (locus 5q13), affecting people of any age but in its most severe form being the most common genetic cause of infant death;
- "Localised spinal muscular atrophies" – much more rare conditions, in some instances described in but a few patients in the world, which are associated with mutations of genes other than "SMN1" and for this reason sometimes termed simply "non-5q spinal muscular atrophies".
A more detailed classification is based on the gene associated with the condition (where identified) and is presented in table below.
In all forms of SMA (with an exception of X-linked spinal muscular atrophy type 1), only motor neurons, located at the anterior horn of spinal cord, are affected; sensory neurons, which are located at the posterior horn of spinal cord, are not affected. By contrast, hereditary disorders that cause both weakness due to motor denervation along with "sensory" impairment due to sensory denervation are known as hereditary motor and sensory neuropathies (HMSN).
In all spinal muscular atrophies, the primary feature is muscle weakness accompanied by atrophy of muscle. This is the result of denervation, or loss of the signal to contract that is transmitted by the motor neurons in the spinal cord. The signal is normally transmitted from the spinal cord to muscle via the motor neuron's axon, but in spinal muscular atrophies either the entire motor neuron or the motor neuron's axon loses the ability to transmit signals to muscles.
The symptoms are strongly related to the exact disease (see above) and, sometimes, to the age of onset. Certain conditions (e.g., spinal muscular atrophy or spinal and bulbar muscular atrophy) have a wide range, from infancy to adult, fatal to trivial, with different affected individuals manifesting every shade of impairment between these two extremes. Other muscular atrophies have a different and often very severe course. Some of them are extremely rare and described only in a handful of individuals. However, in all cases the majority of symptoms are a consequence of muscle weakness.
X-linked spinal muscular atrophy type 2 (SMAX2, XLSMA), also known as arthrogryposis multiplex congenita X-linked type 1 (AMCX1), is a rare neurological disorder involving death of motor neurons in the anterior horn of spinal cord resulting in generalised muscle wasting (atrophy). The disease is caused by a mutation in "UBA1" gene and is passed in a X-linked recessive manner by carrier mothers to affected sons.
Affected babies have general muscle weakness, weak cry and floppy limbs; consequently, the condition is usually apparent at or even before birth. Symptoms resemble the more severe forms of the more common spinal muscular atrophy (SMA); however, SMAX2 is caused by a different genetic defect and only genetic testing can correctly identify the disease.
The disorder is usually fatal in infancy or early childhood due to progressive respiratory failure, although survival into teenage years have been reported. As with many genetic disorders, there is no known cure to SMAX2. Appropriate palliative care may be able to increase quality of life and extend lifespan.
Accurate diagnosis of these Parkinson-plus syndromes is improved when precise diagnostic criteria are used. Since diagnosis of individual Parkinson-plus syndromes is difficult, the prognosis is often poor. Proper diagnosis of these neurodegenerative disorders is important as individual treatments vary depending on the condition. The nuclear medicine SPECT procedure using I-IBZM, is an effective tool in the establishment of the differential diagnosis between patients with PD and Parkinson-plus syndromes.
Onset : Early childhood
Progression: Chronic progressive
Clinical: Cerebellar ataxia plus syndrome / Optic Atrophy Plus Syndrome
Ocular: Optic atrophy, nystagmus, scotoma, and bilateral retrobulbar neuritis.
Other: Mental retardation, myoclonic epilepsy, spasticity, and posterior column sensory loss. Tremor in some cases.
Musculoskeletal
Contractures, lower limbs, Achilles tendon contractures, Hamstring contractures, Adductor longus contractures
Systemic
Hypogonadotrophic hypogonadism.
All hereditary motor and sensory neuropathies are inherited. Chromosomes 17 and 1 seem to be the most common chromosomes with mutations. The disease can be inherited in an autosomal dominant, autosomal recessive or X-linked manner.
Behr syndrome is characterized by the association of early-onset optic atrophy with spinocerebellar degeneration resulting in ataxia, pyramidal signs, peripheral neuropathy and developmental delay.
Although it is an autosomal recessive disorder, heterozygotes may still manifest much attenuated symptoms. Autosomal dominant inheritance also being reported in a family. Recently a variant of OPA1 mutation with phenotypic presentation like Behr syndrome is also described. Some reported cases have been found to carry mutations in the OPA1, OPA3 or C12ORF65 genes which are known causes of pure optic atrophy or optic atrophy complicated by movement disorder.
Episodic ataxia type-3 (EA3) is similar to EA1 but often also presents with tinnitus and vertigo. Patients typically present with bouts of ataxia lasting less than 30 minutes and occurring once or twice daily. During attacks, they also have vertigo, nausea, vomiting, tinnitus and diplopia. These attacks are sometimes accompanied by headaches and precipitated by stress, fatigue, movement and arousal after sleep. Attacks generally begin in early childhood and last throughout the patients' lifetime. Acetazolamide administration has proved successful in some patients. As EA3 is extremely rare, there is currently no known causative gene. The locus for this disorder has been mapped to the long arm of chromosome 1 (1q42).
Cerebral atrophy is a common feature of many of the diseases that affect the brain. Atrophy of any tissue means a decrement in the size of the cell, which can be due to progressive loss of cytoplasmic proteins. In brain tissue, atrophy describes a loss of neurons and the connections between them. Atrophy can be generalized, which means that all of the brain has shrunk; or it can be focal, affecting only a limited area of the brain and resulting in a decrease of the functions that area of the brain controls. If the cerebral hemispheres (the two lobes of the brain that form the cerebrum) are affected, conscious thought and voluntary processes may be impaired.
Some degree of cerebral shrinkage occurs naturally with age; after the brain completes growth and attains its maximum mass at around age 25, it gradually loses mass with each decade of life, although the rate of loss is comparatively tiny until the age of 60, when approximately .5 to 1% of brain volume is lost per year. By age 75, the brain is an average of 15% smaller than it was at 25. Some areas of the brain such as short-term memory are affected more than others and men lose more brain mass overall than women.
Brain atrophy does not affect all regions with the same intensity as shown by neuroimaging.
Many diseases that cause cerebral atrophy are associated with dementia, seizures, and a group of language disorders called the aphasias. Dementia is characterized by a progressive impairment of memory and intellectual function that is severe enough to interfere with social and work skills. Memory, orientation, abstraction, ability to learn, visual-spatial perception, and higher executive functions such as planning, organizing and sequencing may also be impaired. Seizures can take different forms, appearing as disorientation, strange repetitive movements, loss of consciousness, or convulsions. Aphasias are a group of disorders characterized by disturbances in speaking and understanding language. Receptive aphasia causes impaired comprehension. Expressive aphasia is reflected in odd choices of words, the use of partial phrases, disjointed clauses, and incomplete sentences.
Typically, episodic ataxia presents as bouts of ataxia induced by startle, stress, or exertion. Some patients also have continuous tremors of various motor groups, known as myokymia. Other patients have nystagmus, vertigo, tinnitus, diplopia or seizures.