Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The olfactory system is the system related to the sense of smell (olfaction). Many fish activities are dependent on olfaction, such as: mating, discriminating kin, avoiding predators, locating food, contaminant avoidance, imprinting and homing. These activities are referred to as “olfactory-mediated.” Impairment of the olfactory system threatens survival and has been used as an ecologically relevant sub-lethal toxicological endpoint for fish within studies. Olfactory information is received by sensory neurons, like the olfactory nerve, that are in a covered cavity separated from the aquatic environment by mucus. Since they are in almost direct contact with the surrounding environment, these neurons are vulnerable to environmental changes. Fish can detect natural chemical cues in aquatic environments at concentrations as low as parts per billion (ppb) or parts per trillion (ppt).
Studies have shown that exposures to metals, pesticides, or surfactants can disrupt fish olfaction, which can impact their survival and reproductive success. Many studies have indicated copper as a source of olfactory toxicity in fishes, among other common substances. Olfactory toxicity can occur by multiple, complex Modes of Toxic Action.
Hallmark symptoms of ciguatera in humans include gastrointestinal, cardiovascular, and neurological effects. Gastrointestinal symptoms include nausea, vomiting, and diarrhea, usually followed by neurological symptoms such as headaches, muscle aches, paresthesia, numbness of extremities, mouth and lips, reversal of hot and cold sensation, ataxia, vertigo, and hallucinations. Severe cases of ciguatera can also result in cold allodynia, which is a burning sensation on contact with cold. Neurological symptoms can persist and ciguatera poisoning is occasionally misdiagnosed as multiple sclerosis. Cardiovascular symptoms include bradycardia, tachycardia, hypotension, hypertension, orthostatic tachycardia, exercise intolerance, and rhythm disorders. Death from the condition can occur, but is extremely rare.
Dyspareunia and other ciguatera symptoms have developed in otherwise healthy males and females following sexual intercourse with partners suffering ciguatera poisoning, signifying that the toxin may be sexually transmitted. Diarrhea and facial rashes have been reported in breastfed infants of poisoned mothers, suggesting that ciguatera toxins migrate into breast milk.
The symptoms can last from weeks to years, and in extreme cases as long as 20 years, often leading to long-term disability. Most people do recover slowly over time. Often patients recover, but symptoms then reappear. Such relapses can be triggered by consumption of nuts, seeds, alcoholic beverages, fish or fish-containing products, chicken or eggs, high histamine foods, temperature extremes, or by exposure to fumes such as those of bleach and other chemicals. Exercise is also a possible trigger.
In the brain, domoic acid especially damages the hippocampus and amygdaloid nucleus. It damages the neurons by activating AMPA and kainate receptors, causing an influx of calcium. Although calcium flowing into cells is a normal event, the uncontrolled increase of calcium causes the cell to degenerate. See reviews by Ramsdell (2007) and Pulido (2008).
Gastrointestinal symptoms can appear 24 hours after ingestion of affected molluscs. They may include vomiting, nausea, diarrhea, abdominal cramps and haemorrhagic gastritis. In more severe cases, neurological symptoms can take several hours or up to three days to develop. These include headache, dizziness, disorientation, vision disturbances, loss of short-term memory, motor weakness, seizures, profuse respiratory secretions, hiccups, unstable blood pressure, cardiac arrhythmia and coma.
People poisoned with very high doses of the toxin or displaying risk factors such as old age and renal failure can die. Death has occurred in 4 of 107 confirmed cases. In a few cases, permanent sequelae included short-term memory loss and peripheral polyneuropathy.
There is no known antidote available for domoic acid, so if symptoms fit the description, it is advised to go quickly to a hospital. Cooking or freezing affected fish or shellfish tissue does not lessen the toxicity.
New research has found that domoic acid is a heat-resistant and very stable toxin which can damage kidneys at concentrations that are 100 times lower than what causes neurological effects.
Symptoms typically occur within 10–30 minutes of ingesting the fish and generally are self-limited. People with asthma are more vulnerable to respiratory problems such as wheezing or bronchospasms. However, symptoms may show over two hours after consumption of a spoiled dish. They usually last for about 10 to 14 hours, and rarely exceed one to two days.
The above symptoms can advance to:
- facial rash (intense itching may accompany the rash.)
- torso or body rash: The rash associated with scombroid poisoning is a form of urticaria, but most commonly does not include wheals (patchy areas of skin-swelling also known as hives) that may be seen in true allergies.
- edema (this is generalized if it occurs at all)
- short-term diarrhea
- abdominal cramps
Ciguatera is a foodborne illness caused by eating certain reef fish whose flesh is contaminated with a toxin made by dinoflagellates such as "Gambierdiscus toxicus" which live in tropical and subtropical waters. These dinoflagellates adhere to coral, algae and seaweed, where they are eaten by herbivorous fish which in turn are eaten by larger carnivorous fish like barracudas, shark, and even omnivorous fish like basses and other fish like mullet. This is called biomagnification. Affected fish may show no sign of infection or, in more advanced cases, will be weakened and visibly thin, with yellowish eyes. As well, fish may be pale or a different color than usual.
"Gambierdiscus toxicus" is the primary dinoflagellate responsible for the production of a number of similar polyether toxins, including ciguatoxin, maitotoxin, gambieric acid and scaritoxin, as well as the long-chain alcohol palytoxin. Other dinoflagellates that may cause ciguatera include "Prorocentrum" spp., "Ostreopsis" spp., "Coolia monotis", "Thecadinium" spp. and "Amphidinium carterae". Predator species near the top of the food chain in tropical and subtropical waters are most likely to cause ciguatera poisoning, although many other species cause occasional outbreaks of toxicity.
Ciguatoxin is odourless, tasteless and cannot be removed by conventional cooking.
Researchers such as Ross M. Brown with his "New Religion" theory suggest that ciguatera outbreaks caused by warm climatic conditions in part propelled the migratory voyages of Polynesians between 1000 and 1400AD.
In 2017 an updated review of "Clinical, Epidemiological, Environmental, and Public Health Management" was published and is available at the National Institute of Health website.
Amnesic shellfish poisoning (ASP) is an illness caused by consumption of the marine biotoxin called domoic acid. This toxin is produced naturally by marine diatoms belonging to the genus "Pseudo-nitzschia" and the species "Nitzschia navis-varingica". When accumulated in high concentrations by shellfish during filter feeding, domoic acid can then be passed on to birds, marine mammals and humans via consumption of the contaminated shellfish.
Although human illness due to domoic acid has only been associated with shellfish, the toxin can bioaccumulate in many marine organisms that consume phytoplankton, such as anchovies, and sardines. Intoxication by domoic acid in non-human organisms is frequently referred to as domoic acid poisoning or DAP. In mammals, including humans, domoic acid acts as a neurotoxin, causing permanent short-term memory loss, brain damage, and death in severe cases.
Early investigation by Hasler and Wisby (1951) examined how fish use olfactory imprinting to discriminate smells in order for fish to find their natal streams. This research provided the framework for testing synthetic chemicals used by hatcheries to examine homing and straying by hatchery fish. The investigation of the toxicity of mercury and copper to the olfactory systems in fish began in the early 1970s. Where they found that solutions of mercury chloride (HgCl) and copper sulfate (CuSO) depressed olfactory response during exposure to the two toxicants and found that toxicant concentration and olfactory response had an inverse relationship to each other.
Common symptoms of mercury poisoning include peripheral neuropathy, presenting as paresthesia or itching, burning, pain, or even a sensation that resembles small insects crawling on or under the skin (formication); skin discoloration (pink cheeks, fingertips and toes); swelling; and desquamation (shedding or peeling of skin).
Mercury irreversibly inhibits selenium-dependent enzymes (see below) and may also inactivate "S"-adenosyl-methionine, which is necessary for catecholamine catabolism by catechol-"O"-methyl transferase. Due to the body's inability to degrade catecholamines (e.g. epinephrine), a person suffering from mercury poisoning may experience profuse sweating, tachycardia (persistently faster-than-normal heart beat), increased salivation, and hypertension (high blood pressure).
Affected children may show red cheeks, nose and lips, loss of hair, teeth, and nails, transient rashes, hypotonia (muscle weakness), and increased sensitivity to light. Other symptoms may include kidney dysfunction (e.g. Fanconi syndrome) or neuropsychiatric symptoms such as emotional lability, memory impairment, or insomnia.
Thus, the clinical presentation may resemble pheochromocytoma or Kawasaki disease. Desquamation (skin peeling) can occur with severe mercury poisoning acquired by handling elemental mercury.
ICD-9-CM code 985.8 "Toxic effect of other specified metals" includes acute & chronic copper poisoning (or other toxic effect) whether intentional, accidental, industrial etc.
- In addition, it includes poisoning and toxic effects of other metals including tin, selenium nickel, iron, heavy metals, thallium, silver, lithium, cobalt, aluminum and bismuth. Some poisonings, e.g. zinc phosphide, would/could also be included as well as under 989.4 Poisoning due to other pesticides, etc.
- Excluded are toxic effects of mercury, arsenic, manganese, beryllium, antimony, cadmium, and chromium.
Diseases can have a variety of causes, including bacterial infections from an external source such as "Pseudomonas fluorescens" (causing fin rot and fish dropsy), fungal infections (Saprolegnia), mould infections (Oomycete and "Saprolegnia"), parasitic disorders ("Gyrodactylus salaris", "Ichthyophthirius multifiliis", Cryptocaryon, Oodinium causing velvet disease, "Brooklynella hostilis", head and lateral line erosion, Glugea, "Ceratomyxa shasta", "Kudoa thyrsites", "Tetracapsuloides bryosalmonae", "Ceratomyxa shasta" leeches, nematode, Trematoda, Platyhelminthes and fish louse), viral disorders, metabolic disorders, inappropriate water conditions (insufficient aeration, pH, water hardness, temperature and ammonia poisoning) and malnutrition.
External bacterial infections may cause spots or streaks on the body which appear red or orange Dropsy (bloating) is also a sign of a bacterial infection. "False fungal infections" look like fungus but is actually a bacterial infection known as Columnaris. These symptoms may include a white or gray film on the body.
Acute symptoms of copper poisoning by ingestion include vomiting, hematemesis (vomiting of blood), hypotension (low blood pressure), melena (black "tarry" feces), coma, jaundice (yellowish pigmentation of the skin), and gastrointestinal distress. Individuals with glucose-6-phosphate deficiency may be at increased risk of hematologic effects of copper. Hemolytic anemia resulting from the treatment of burns with copper compounds is infrequent.
Chronic (long-term) effects of copper exposure can damage the liver and kidneys. Mammals have efficient mechanisms to regulate copper stores such that they are generally protected from excess dietary copper levels.
Those same protection mechanisms can cause milder symptoms, which are often misdiagnosed as psychiatric disorders. There is a lot of research going on regarding the function of the Cu/Zn ratio in many conditions, neurological, endocrinological and psychological. The diagnostic difficulties arise from the fact that many of the substances that protect us from excess copper perform important functions in our neurological and endocrine systems. When they are used to bind copper in the plasma, to prevent it from being absorbed in the tissues, their own function may go unfulfilled. Such symptoms often include mood swings, irritability, depression, fatigue, excitation, difficulty focusing, feeling out of control, etc. To further complicate diagnosis, some symptoms of excess copper are similar to those of a copper deficit.
The U.S. Environmental Protection Agency's Maximum Contaminant Level (MCL) in drinking water is 1.3 milligrams per liter. The MCL for copper is based on the expectation that a lifetime of consuming copper in water at this level is without adverse effect (gastrointestinal). The US EPA lists copper as a micronutrient and a toxin. Toxicity in mammals includes a wide range of animals and effects such as liver cirrhosis, necrosis in kidneys and the brain, gastrointestinal distress, lesions, low blood pressure, and fetal mortality. The Occupational Safety and Health Administration (OSHA) has set a limit of 0.1 mg/m for copper fumes (vapor generated from heating copper) and 1 mg/m for copper dusts (fine metallic copper particles) and mists (aerosol of soluble copper) in workroom air during an eight-hour work shift, 40-hour work week. Toxicity to other species of plants and animals is noted to varying levels.
Signs of ethylene glycol poisoning depend upon the time after ingestion. Symptoms usually follow a three-step progression, although poisoned individuals will not always develop each stage.
- Stage 1 (30 minutes to 12 hours) consists of neurological and gastrointestinal symptoms and looks similar to alcohol poisoning. Poisoned individuals may appear to be intoxicated, dizzy, lacking coordination of muscle movements, drooling, depressed, and have slurred speech, seizuring, abnormal eye movements, headaches, and confusion. Irritation to the stomach may cause nausea and vomiting. Also seen are excessive thirst and urination. Over time, the body metabolizes ethylene glycol into other toxins.
- Stage 2 (12 to 36 hours) where signs of "alcohol" poisoning appear to resolve, underlying severe internal damage is still occurring. An elevated heart rate, hyperventilation or increased breathing effort, and dehydration may start to develop, along with high blood pressure and metabolic acidosis. These symptoms are a result of accumulation of organic acids formed by the metabolism of ethylene glycol. Additionally low calcium concentrations in the blood, overactive muscle reflexes, muscle spasms, QT interval prolongation, and congestive heart failure may occur. If untreated, death most commonly occurs during this period.
- Stage 3 (24 to 72 hours) kidney failure is the result of ethylene glycol poisoning. In cats, this stage occurs 12–24 hours after getting into antifreeze; in dogs, at 36–72 hours after getting into antifreeze. During this stage, severe kidney failure is developing secondary to calcium oxalate crystals forming in the kidneys. Severe lethargy, coma, depression, vomiting, seizures, drooling, and inappetance may be seen. Other symptoms include acute tubular necrosis, red blood cells in the urine, excess proteins in the urine, lower back pain, decreased or absent production of urine, elevated blood concentration of potassium, and acute kidney failure. If kidney failure occurs it is typically reversible, although weeks or months of supportive care including hemodialysis may be required before kidney function returns.
Mercury poisoning is a type of metal poisoning due to mercury exposure. Symptoms depend upon the type, dose, method, and duration of exposure. They may include muscle weakness, poor coordination, numbness in the hands and feet, skin rashes, anxiety, memory problems, trouble speaking, trouble hearing, or trouble seeing. High level exposure to methylmercury is known as Minamata disease. Methylmercury exposure in children may result in acrodynia (pink's disease) in which the skin becomes pink and peels. Long-term complications may include kidney problems and decreased intelligence. The effects of long-term low-dose exposure to methylmercury is unclear.
Forms of mercury exposure include metal, vapor, salt, and organic compound. Most exposure is from eating fish, amalgam based dental fillings, or exposure at work. In fish, those higher up in the food chain generally have higher levels of mercury. Less commonly poisoning may occur as an attempt to end one's life. Human activities that release mercury into the environment include the burning of coal and mining of gold. Tests of the blood, urine, and hair for mercury are available but do not relate well to the amount in the body.
Prevention includes eating a diet low in mercury, removing mercury from medical and other devices, proper disposal of mercury, and not mining further mercury. In those with acute poisoning from inorganic mercury salts, chelation with either dimercaptosuccinic acid (DMSA) or dimercaptopropane sulfonate (DMPS) appears to improve outcomes if given within a few hours of exposure. Chelation for those with long-term exposure is of unclear benefit. In certain communities that survive on fishing, rates of mercury poisoning among children have been as high as 1.7 per 100.
Ichthyoallyeinotoxism, or hallucinogenic fish inebriation, comes from eating certain species of fish found in several parts of the tropics, the effects of which are reputed to be similar in some aspects to LSD. Experiences may include vivid auditory and visual hallucinations. This has given rise to the collective common name "dream fish" for ichthyoallyeinotoxic fish.
The species most commonly claimed to be capable of producing this kind of toxicity include several species from the "Kyphosus" genus, including "Kyphosus fuscus", "K. cinerascens" and "K. vaigiensis". It is unclear whether the toxins are produced by the fish themselves or by marine algae in their diet, but a dietary origin may be more likely.
"Sarpa salpa", a species of bream, can induce LSD-like hallucinations if it is eaten. These widely distributed coastal fish are called "the fish that make dreams" in Arabic. In 2006, two men who ate fish, apparently the "Sarpa salpa" caught in the Mediterranean were affected by ichthyoallyeinotoxism and experienced hallucinations lasting for several days.
Other hallucinogenic fish are "Siganus spinus", called "the fish that inebriates" in Reunion Island, and "Mulloides flavolineatus" (formerly "Mulloidichthys samoensis"), called "the chief of ghosts" in Hawaii.
Ornamental fish kept in aquariums are susceptible to numerous diseases. Due to their generally small size and the low cost of replacing diseased or dead fish, the cost of testing and treating diseases is often seen as more trouble than the value of the fish.
Due to the artificially limited volume of water and high concentration of fish in most aquarium tanks, communicable diseases often affect most or all fish in a tank. An improper nitrogen cycle, inappropriate aquarium plants and potentially harmful freshwater invertebrates can directly harm or add to the stresses on ornamental fish in a tank. Despite this, many diseases in captive fish can be avoided or prevented through proper water conditions and a well-adjusted ecosystem within the tank.
Metal toxicity or metal poisoning is the toxic effect of certain metals in certain forms and doses on life. Some metals are toxic when they form poisonous soluble compounds. Certain metals have no biological role, i.e. are not essential minerals, or are toxic when in a certain form. In the case of lead, any measurable amount may have negative health effects. Often heavy metals are thought as synonymous, but lighter metals may also be toxic in certain circumstances, such as beryllium and lithium. Not all heavy metals are particularly toxic, and some are essential, such as iron. The definition may also include trace elements when in abnormally high doses may be toxic. An option for treatment of metal poisoning may be chelation therapy, which is a technique which involves the administration of chelation agents to remove metals from the body.
Toxic metals sometimes imitate the action of an essential element in the body, interfering with the metabolic process resulting in illness. Many metals, particularly heavy metals are toxic, but some heavy metals are essential, and some, such as bismuth, have a low toxicity. Most often the definition of toxic metals includes at least cadmium, manganese, lead, mercury and the radioactive metals. Metalloids (arsenic, polonium) may be included in the definition. Radioactive metals have both radiological toxicity and chemical toxicity. Metals in an oxidation state abnormal to the body may also become toxic: chromium(III) is an essential trace element, but chromium(VI) is a carcinogen.
Toxicity is a function of solubility. Insoluble compounds as well as the metallic forms often exhibit negligible toxicity. The toxicity of any metal depends on its ligands. In some cases, organometallic forms, such as methylmercury and tetraethyl lead, can be extremely toxic. In other cases, organometallic derivatives are less toxic such as the cobaltocenium cation.
Decontamination for toxic metals is different from organic toxins: because toxic metals are elements, they cannot be destroyed. Toxic metals may be made insoluble or collected, possibly by the aid of chelating agents, or through bioremediation. Alternatively, they can be diluted into a sufficiently large reservoir, such as the sea, because immediate toxicity is a function of concentration rather than amount.
Toxic metals can bioaccumulate in the body and in the food chain. Therefore, a common characteristic of toxic metals is the chronic nature of their toxicity. This is particularly notable with radioactive heavy metals such as radium, which imitates calcium to the point of being incorporated into human bone, although similar health implications are found in lead or mercury poisoning. The exceptions to this are barium and aluminium, which can be removed efficiently by the kidneys.
Fluoride toxicity is a condition in which there are elevated levels of the fluoride ion in the body. Although fluoride is safe for dental health at low concentrations, sustained consumption of large amounts of soluble fluoride salts is dangerous. Referring to a common salt of fluoride, sodium fluoride (NaF), the lethal dose for most adult humans is estimated at 5 to 10 g (which is equivalent to 32 to 64 mg/kg elemental fluoride/kg body weight). Ingestion of fluoride can produce gastrointestinal discomfort at doses at least 15 to 20 times lower (0.2–0.3 mg/kg or 10 to 15 mg for a 50 kg person) than lethal doses. Although it is helpful for dental health in low dosage, chronic exposure to fluoride in large amounts interferes with bone formation. In this way, the most widespread examples of fluoride poisoning arise from consumption of ground water that is abnormally fluoride-rich.
A toxic heavy metal is any relatively dense metal or metalloid that is noted for its potential toxicity, especially in environmental contexts. The term has particular application to cadmium, mercury, lead and arsenic, all of which appear in the World Health Organisation's list of 10 chemicals of major public concern. Other examples include manganese, chromium, cobalt, nickel, copper, zinc, selenium, silver, antimony and thallium.
Heavy metals are found naturally in the earth. They become concentrated as a result of human caused activities and can enter plant, animal, and human tissues via inhalation, diet, and manual handling. Then, they can bind to and interfere with the functioning of vital cellular components. The toxic effects of arsenic, mercury, and lead were known to the ancients, but methodical studies of the toxicity of some heavy metals appear to date from only 1868. In humans, heavy metal poisoning is generally treated by the administration of chelating agents. Some elements otherwise regarded as toxic heavy metals are essential, in small quantities, for human health.
Ethylene glycol poisoning is poisoning caused by drinking ethylene glycol. Early symptoms include intoxication, vomiting and abdominal pain. Later symptoms may include a decreased level of consciousness, headache, and seizures. Long term outcomes may include kidney failure and brain damage. Toxicity and death may occur even after drinking a small amount.
Ethylene glycol is a colorless, odorless, sweet liquid, commonly found in antifreeze. It may be drunk accidentally or purposefully in an attempt to cause death. When broken down by the body it results in glycolic acid and oxalic acid which cause most of the toxicity. The diagnosis may be suspected when calcium oxalate crystals are seen in the urine or when acidosis or an increased osmol gap is present in the blood. Diagnosis may be confirmed by measuring ethylene glycol levels in the blood; however, many hospitals do not have the ability to perform this test.
Early treatment increases the chance of a good outcome. Treatment consists of stabilizing the person, followed by the use of an antidote. The preferred antidote is fomepizole with ethanol used if this is not available. Hemodialysis may also be used in those where there is organ damage or a high degree of acidosis. Other treatments may include sodium bicarbonate, thiamine, and magnesium.
More than 5000 cases of poisoning occur in the United States each year. Those affected are often adults and male. Deaths from ethylene glycol have been reported as early as 1930. An outbreak of deaths in 1937 due to a medication mixed in a similar compound, diethylene glycol, resulted in the Food, Drug, and Cosmetic Act of 1938 in the United States which mandated evidence of safety before new medications could be sold. Antifreeze products sometimes have a substance to make it bitter added to discourage drinking by children and other animals but this has not been found to be effective.
Symptoms typically begin to appear two months after the fish are transferred from freshwater hatcheries to open net sea cages. Symptoms include mucus build-up on the gills of infected fish and hyper-plastic lesions, causing white spots and eventual deterioration of the gill tissue. Fish will show signs of dyspnoea such as rapid opercular movements and lethargy. Although usually recognised by hyperplastic and proliferative gill lesions, the effects of AGD occur before oxygen transfer across the gill is severely compromised. AGD affected fish show a significant increase in vascular resistance contributing to cardiovascular collapse. Such effects result in compensatory changes in heart shape to improve its efficiency at pumping blood.
Contributing factors are an ambient water temperature above 16 degrees Celsius, crowding and poor water circulation inside the sea pens. Clinical cases are more common in the Summer. The lesions on the gills are highly suggestive of infection. Gill biopsies can be observed under the microscope for amoebas, or tested using fluorescent antibody testing.
Following an oral intake of extremely high doses of zinc (where 300 mg Zn/d – 20 times the US RDA – is a "low intake" overdose), nausea, vomiting, pain, cramps and diarrhea may occur. There is evidence of induced copper deficiency, alterations of blood lipoprotein levels, increased levels of LDL, and decreased levels of HDL at long-term intakes of 100 mg Zn/d. The USDA RDA is 15 mg Zn/d.
There is also a condition called the "zinc shakes" or "zinc chills" or metal fume fever that can be induced by the inhalation of freshly formed zinc oxide formed during the welding of galvanized materials.
Amoebic gill disease (AGD) is a potentially fatal disease of some marine fish. It is caused by "Neoparamoeba perurans", the most important amoeba in cultured fish. It primarily affects farm raised fish of the Salmonidae family, most notably affecting the Tasmanian Atlantic Salmon (Salmo salar) industry, costing the A$20 million a year in treatments and lost productivity. Turbot, bass, bream, sea urchins and crabs have also been infected.
The disease has also been reported affecting the commercial salmon fisheries of the United States, Australia, New Zealand, France, Spain, Ireland and Chile. It was first diagnosed in the summer of 1984/1985 in populations of Atlantic Salmon off the east coast of Tasmania and was found to be caused by the "Neoparamoeba perurans" n.sp.
Velvet disease (also called gold-dust, rust and coral disease) is a fish disease caused by dinoflagellate parasites of the genus "Piscinoodinium", specifically "Amyloodinium" in marine fish, and "Oodinium" in freshwater fish. The disease gives infected organisms a dusty, brownish-gold color. The disease occurs most commonly in tropical fish, and to a lesser extent, marine aquaria.
Zinc toxicity is a medical condition involving an overdose on, or toxic overexposure to, zinc. Such toxicity levels have been seen to occur at ingestion of greater than 225 mg of zinc. Excessive absorption of zinc can suppress copper and iron absorption. The free zinc ion in solution is highly toxic to bacteria, plants, invertebrates, and even vertebrate fish. Zinc is an essential trace metal with very low toxicity in humans.