Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms are dependent on the type of TBI (diffuse or focal) and the part of the brain that is affected. Unconsciousness tends to last longer for people with injuries on the left side of the brain than for those with injuries on the right. Symptoms are also dependent on the injury's severity. With mild TBI, the patient may remain conscious or may lose consciousness for a few seconds or minutes. Other symptoms of mild TBI include headache, vomiting, nausea, lack of motor coordination, dizziness, difficulty balancing, lightheadedness, blurred vision or tired eyes, ringing in the ears, bad taste in the mouth, fatigue or lethargy, and changes in sleep patterns. Cognitive and emotional symptoms include behavioral or mood changes, confusion, and trouble with memory, concentration, attention, or thinking. Mild TBI symptoms may also be present in moderate and severe injuries.
A person with a moderate or severe TBI may have a headache that does not go away, repeated vomiting or nausea, convulsions, an inability to awaken, dilation of one or both pupils, slurred speech, aphasia (word-finding difficulties), dysarthria (muscle weakness that causes disordered speech), weakness or numbness in the limbs, loss of coordination, confusion, restlessness, or agitation. Common long-term symptoms of moderate to severe TBI are changes in appropriate social behavior, deficits in social judgment, and cognitive changes, especially problems with sustained attention, processing speed, and executive functioning. Alexithymia, a deficiency in identifying, understanding, processing, and describing emotions occurs in 60.9% of individuals with TBI. Cognitive and social deficits have long-term consequences for the daily lives of people with moderate to severe TBI, but can be improved with appropriate rehabilitation.
When the pressure within the skull (intracranial pressure, abbreviated ICP) rises too high, it can be deadly. Signs of increased ICP include decreasing level of consciousness, paralysis or weakness on one side of the body, and a blown pupil, one that fails to constrict in response to light or is slow to do so. Cushing's triad, a slow heart rate with high blood pressure and respiratory depression is a classic manifestation of significantly raised ICP. Anisocoria, unequal pupil size, is another sign of serious TBI. Abnormal posturing, a characteristic positioning of the limbs caused by severe diffuse injury or high ICP, is an ominous sign.
Small children with moderate to severe TBI may have some of these symptoms but have difficulty communicating them. Other signs seen in young children include persistent crying, inability to be consoled, listlessness, refusal to nurse or eat, and irritability.
Because the brain swelling that produces these symptoms is often a slow process, these symptoms may not surface for days to weeks after the injury.
Common symptoms of a closed-head injury include:
- headache
- dizziness
- nausea
- slurred speech
- vomiting
Severe head injuries can lead to permanent vegetative states or death, therefore being able to recognize symptoms and get medical attention is very important. Symptoms of a severe closed-head injury include:
- coma
- seizures
- loss of consciousness
Brain injuries can be classified into mild, moderate, and severe categories. The Glasgow Coma Scale (GCS), the most commonly used system for classifying TBI severity, grades a person's level of consciousness on a scale of 3–15 based on verbal, motor, and eye-opening reactions to stimuli. In general, it is agreed that a TBI with a GCS of 13 or above is mild, 9–12 is moderate, and 8 or below is severe. Similar systems exist for young children. However, the GCS grading system has limited ability to predict outcomes. Because of this, other classification systems such as the one shown in the table are also used to help determine severity. A current model developed by the Department of Defense and Department of Veterans Affairs uses all three criteria of GCS after resuscitation, duration of post-traumatic amnesia (PTA), and loss of consciousness (LOC). It also has been proposed to use changes that are visible on neuroimaging, such as swelling, focal lesions, or diffuse injury as method of classification. Grading scales also exist to classify the severity of mild TBI, commonly called concussion; these use duration of LOC, PTA, and other concussion symptoms.
Headache is the most common mTBI symptom. Others include dizziness, vomiting, nausea, lack of motor coordination, difficulty balancing, or other problems with movement or sensation. Visual symptoms include light sensitivity, seeing bright lights, blurred vision, and double vision. Tinnitus, or a ringing in the ears, is also commonly reported. In one in about seventy concussions, concussive convulsions occur, but seizures that take place during or immediately after concussion are not "post-traumatic seizures", and, unlike post-traumatic seizures, are not predictive of post-traumatic epilepsy, which requires some form of structural brain damage, not just a momentary disruption in normal brain functioning. Concussive convulsions are thought to result from temporary loss or inhibition of motor function, and are not associated either with epilepsy or with more serious structural damage. They are not associated with any particular sequelae, and have the same high rate of favorable outcomes as concussions without convulsions.
Concussion is associated with a variety of symptoms, which typically occur rapidly after the injury. Early symptoms usually subside within days or weeks. The number and type of symptoms any one individual suffers varies widely.
Traumatic brain injury (TBI) is an exchangeable word used for the word concussion. This term refers to a mild brain injury. This injury is a result due to a blow to the head that could make the person’s physical, cognitive, and emotional behaviors irregular. Symptoms may include clumsiness, fatigue, confusion, nausea, blurry vision, headaches, and others. Mild concussions are associated with sequelae. Severity is measured using various concussion grading systems.
A slightly greater injury is associated with both anterograde and retrograde amnesia (inability to remember events before or after the injury). The amount of time that the amnesia is present correlates with the severity of the injury. In all cases the patients develop postconcussion syndrome, which includes memory problems, dizziness, tiredness, sickness and depression. Cerebral concussion is the most common head injury seen in children.
Diffuse axonal injury, or DAI, usually occurs as the result of an acceleration or deceleration motion, not necessarily an impact. Axons are stretched and damaged when parts of the brain of differing density slide over one another. Prognoses vary widely depending on the extent of damage.
In the past, the term PCS was also used to refer to immediate physical symptoms or post-concussive symptoms following a minor TBI or concussion. The severity of these symptoms typically decreases rapidly. In addition, the nature of the symptoms may change over time: acute symptoms are most commonly of a physical nature, while persisting symptoms tend to be predominantly psychological. Symptoms such as noise sensitivity, problems with concentration and memory, irritability, depression, and anxiety may be called 'late symptoms' because they generally do not occur immediately after the injury, but rather in the days or weeks after the injury. Nausea and drowsiness commonly occur acutely following concussion. Headache and dizziness occur immediately after the injury, but also can be long lasting.
A common condition associated with PCS is headache. While most people have headaches of the same type they experienced before the injury, people diagnosed with PCS often report more frequent or longer-lasting headaches. Between 30% and 90% of people treated for PCS report having more frequent headaches and between 8% and 32% still report them a year after the injury.
Dizziness is another common symptom reported in about half of people diagnosed with PCS and is still present in up to a quarter of them a year after the injury. Older people are at especially high risk for dizziness, which can contribute to subsequent injuries and higher rates of mortality due to falls.
About 10% of people with PCS develop sensitivity to light or noise, about 5% experience a decreased sense of taste or smell, and about 14% report blurred vision. People may also have double vision or ringing in the ears, also called tinnitus. PCS may cause insomnia, fatigue, or other problems with sleep.
A concussion, which is known as a subset traumatic brain injury (TBI), is when a force comes in contact with the head, neck or face, or fast movement of the head, causing a functional injury to the brain. Depending on where the location of impact, depends on the severity of the injury. It is short-lived impairment of neurological function, the brains ability to process information, which can be resolved in seven to ten days. Not all concussion involves the loss of consciousness, with it occurring in less than 10% of concussions. Second-impact syndrome is when a player has obtained a second concussion when you either return to field the same day, or return to play before a complete recovery from a previous concussion. This is a result from brain swelling, from vascular congestion and increased intracranial pressure, this can be fatal to a player as it is a very difficult medical injury to control. The brain is surrounded by cerebrospinal fluid, which protects it from light trauma. More severe impacts, or the forces associated with rapid acceleration, may not be absorbed by this cushion. Concussion may be caused by impact forces, in which the head strikes or is struck by something, or impulsive forces, in which the head moves without itself being subject to blunt trauma (for example, when the chest hits something and the head snaps forward). Chronic traumatic encephalopathy, or "CTE", is an example of the cumulative damage that can occur as the result of multiple concussions or less severe blows to the head. The condition was previously referred to as "dementia pugilistica", or "punch drunk" syndrome, as it was first noted in boxers. The disease can lead to cognitive and physical handicaps such as parkinsonism, speech and memory problems, slowed mental processing, tremor, depression, and inappropriate behavior. It shares features with Alzheimer's disease. Lamont sai od th PSCA after his incident::
Concussions in England's professional rugby union are the most common injury gained. Concussion can occur where an individual experiences a minor injury to the head. Commonly occurring in high contact sporting activities; American football, boxing, and rugby. It can also occur in recreational activities like horse riding, jumping, cycling, and skiing. The reason being that it doesn't have to be something to strike you in the proximity of your brain, but can also be caused by rapid change of movement, giving the skull not enough time to move with your body, causing your brain to press against your skull. With rugby being such a contact and fast moving sport, it is no wonder why there is concussion and other head injuries occurring. With the development of equipment and training methods, these will help benefit the players on the field know what could happen and how they can help with preventing it.
Geriatric trauma refers to a traumatic injury that occurs to an elderly person. The three prevailing causes of traumatic death in the elderly are falls (which account for 40% of traumatic death in this age group), traffic collisions and burns.
Virtually all organ systems experience a progressive decline in function as a result of the aging process. One example is a decline in circulatory system function caused in part by thickening of the cardiac muscle. This can lead to congestive heart failure or pulmonary edema.
Atrophy of the brain begins to accelerate at around seventy years of age, which leads to a significant reduction in brain mass. Since the skull does not decrease in size with the brain, there is significant space between the two when this occurs which puts the elderly at a higher risk of a subdural hematoma after sustaining a closed head injury. The reduction of brain size can lead to issues with eyesight, cognition and hearing.
Injury is damage to the body caused by external force. This may be caused by accidents, falls, hits, weapons, and other causes. Major trauma is injury that has the potential to cause prolonged disability or death.
In 2013, 4.8 million people died from injuries, up from 4.3 million in 1990. More than 30% of these deaths were transport-related injuries. In 2013, 367,000 children under the age of five died from injuries, down from 766,000 in 1990. Injuries are the cause of 9% of all deaths, and are the sixth-leading cause of death in the world.
Concussions and other types of repetitive play-related head blows in American football have been shown to be the cause of chronic traumatic encephalopathy (CTE), which has led to player suicides and other debilitating symptoms after retirement, including memory loss, depression, anxiety, headaches, and also sleep disturbances.
The list of ex-NFL players that have either been diagnosed "post-mortem" with CTE or have reported symptoms of CTE continues to grow.
An occupational injury is bodily damage resulting from working. The most common organs involved are the spine, hands, the head, lungs, eyes, skeleton, and skin. Occupational injuries can result from exposure to occupational hazards (physical, chemical, biological, or psychosocial), such as temperature, noise, insect or animal bites, blood-borne pathogens, aerosols, hazardous chemicals, radiation, and occupational burnout.
While many prevention methods are set in place, injuries may still occur due to poor ergonomics, manual handling of heavy loads, misuse or failure of equipment, exposure to general hazards, and inadequate safety training.
The World Health Organization (WHO) developed the International Classification of External Causes of Injury (ICECI). Under this system, injuries are classified by
- mechanism of injury;
- objects/substances producing injury;
- place of occurrence;
- activity when injured;
- the role of human intent;
and additional modules. These codes allow the identification of distributions of injuries in specific populations and case identification for more detailed research on causes and preventive efforts.
The United States Bureau of Labor Statistics developed the Occupational Injury and Illness Classification System (OIICS). Under this system injuries are classified by
- nature,
- part of body affected,
- source and secondary source, and
- event or exposure.
The OIICS was first published in 1992 and has been updated several times since.
The Orchard Sports Injury Classification System (OSICS) is used to classify injuries to enable research into specific sports injuries.
Pain, especially headache, is a common complication following a TBI. Being unconscious and lying still for long periods can cause blood clots to form (deep venous thrombosis), which can cause pulmonary embolism. Other serious complications for patients who are unconscious, in a coma, or in a vegetative state include pressure sores, pneumonia or other infections, and progressive multiple organ failure.
The risk of post-traumatic seizures increases with severity of trauma (image at right) and is particularly elevated with certain types of brain trauma such as cerebral contusions or hematomas. As many as 50% of people with penetrating head injuries will develop seizures. People with early seizures, those occurring within a week of injury, have an increased risk of post-traumatic epilepsy (recurrent seizures occurring more than a week after the initial trauma) though seizures can appear a decade or more after the initial injury and the common seizure type may also change over time. Generally, medical professionals use anticonvulsant medications to treat seizures in TBI patients within the first week of injury only and after that only if the seizures persist.
Neurostorms may occur after a severe TBI. The lower the Glasgow Coma Score (GCS), the higher the chance of Neurostorming. Neurostorms occur when the patient's Autonomic Nervous System (ANS), Central Nervous System (CNS), Sympathetic Nervous System (SNS), and ParaSympathetic Nervous System (PSNS) become severely compromised https://www.brainline.org/story/neurostorm-century-part-1-3-medical-terminology . This in turn can create the following potential life-threatening symptoms: increased IntraCranial Pressure (ICP), tachycardia, tremors, seizures, fevers, increased blood pressure, increased Cerebral Spinal Fluid (CSF), and diaphoresis https://www.brainline.org/story/neurostorm-century-part-1-3-medical-terminology. A variety of medication may be used to help decrease or control Neurostorm episodes https://www.brainline.org/story/neurostorm-century-part-3-3-new-way-life.
Parkinson's disease and other motor problems as a result of TBI are rare but can occur. Parkinson's disease, a chronic and progressive disorder, may develop years after TBI as a result of damage to the basal ganglia. Other movement disorders that may develop after TBI include tremor, ataxia (uncoordinated muscle movements), and myoclonus (shock-like contractions of muscles).
Skull fractures can tear the meninges, the membranes that cover the brain, leading to leaks of cerebrospinal fluid (CSF). A tear between the dura and the arachnoid membranes, called a CSF fistula, can cause CSF to leak out of the subarachnoid space into the subdural space; this is called a subdural hygroma. CSF can also leak from the nose and the ear. These tears can also allow bacteria into the cavity, potentially causing infections such as meningitis. Pneumocephalus occurs when air enters the intracranial cavity and becomes trapped in the subarachnoid space. Infections within the intracranial cavity are a dangerous complication of TBI. They may occur outside of the dura mater, below the dura, below the arachnoid (meningitis), or within the brain itself (abscess). Most of these injuries develop within a few weeks of the initial trauma and result from skull fractures or penetrating injuries. Standard treatment involves antibiotics and sometimes surgery to remove the infected tissue.
Injuries to the base of the skull can damage nerves that emerge directly from the brain (cranial nerves). Cranial nerve damage may result in:
- Paralysis of facial muscles
- Damage to the nerves responsible for eye movements, which can cause double vision
- Damage to the nerves that provide sense of smell
- Loss of vision
- Loss of facial sensation
- Swallowing problems
Hydrocephalus, post-traumatic ventricular enlargement, occurs when CSF accumulates in the brain, resulting in dilation of the cerebral ventricles and an increase in ICP. This condition can develop during the acute stage of TBI or may not appear until later. Generally it occurs within the first year of the injury and is characterized by worsening neurological outcome, impaired consciousness, behavioral changes, ataxia (lack of coordination or balance), incontinence, or signs of elevated ICP.
Any damage to the head or brain usually results in some damage to the vascular system, which provides blood to the cells of the brain. The body can repair small blood vessels, but damage to larger ones can result in serious complications. Damage to one of the major arteries leading to the brain can cause a stroke, either through bleeding from the artery or through the formation of a blood clot at the site of injury, blocking blood flow to the brain. Blood clots also can develop in other parts of the head. Other types of vascular complications include vasospasm, in which blood vessels constrict and restrict blood flow, and the formation of aneurysms, in which the side of a blood vessel weakens and balloons out.
Fluid and hormonal imbalances can also complicate treatment. Hormonal problems can result from dysfunction of the pituitary, the thyroid, and other glands throughout the body. Two common hormonal complications of TBI are syndrome of inappropriate secretion of antidiuretic hormone and hypothyroidism.
Another common problem is spasticity. In this situation, certain muscles of the body are tight or hypertonic because they cannot fully relax.
Traumatic brain injury (TBI, physical trauma to the brain) can cause a variety of complications, health effects that are not TBI themselves but that result from it. The risk of complications increases with the severity of the trauma; however even mild traumatic brain injury can result in disabilities that interfere with social interactions, employment, and everyday living. TBI can cause a variety of problems including physical, cognitive, emotional, and behavioral complications.
Symptoms that may occur after a concussion – a minor form of traumatic brain injury – are referred to as post-concussion syndrome.
A cerebral laceration with large amounts of blood apparent on a CT scan is an indicator of poor prognosis. The progression and course of complications (health effects that result from but are distinct from the injury itself) do not appear to be affected by a cerebral laceration's location or a mass effect it causes.
In the mid 1970s, PTS was first classified by Bryan Jennett into early and late seizures, those occurring within the first week of injury and those occurring after a week, respectively. Though the seven-day cutoff for early seizures is used widely, it is arbitrary; seizures occurring after the first week but within the first month of injury may share characteristics with early seizures. Some studies use a 30‑day cutoff for early seizures instead. Later it became accepted to further divide seizures into immediate PTS, seizures occurring within 24 hours of injury; early PTS, with seizures between a day and a week after trauma; and late PTS, seizures more than one week after trauma. Some consider late PTS to be synonymous with post-traumatic epilepsy.
Early PTS occur at least once in about 4 or 5% of people hospitalized with TBI, and late PTS occur at some point in 5% of them. Of the seizures that occur within the first week of trauma, about half occur within the first 24 hours. In children, early seizures are more likely to occur within an hour and a day of injury than in adults. Of the seizures that occur within the first four weeks of head trauma, about 10% occur after the first week. Late seizures occur at the highest rate in the first few weeks after injury. About 40% of late seizures start within six months of injury, and 50% start within a year.
Especially in children and people with severe TBI, the life-threatening condition of persistent seizure called status epilepticus is a risk in early seizures; 10 to 20% of PTS develop into the condition. In one study, 22% of children under 5 years old developed status seizures, while 11% of the whole TBI population studied did. Status seizures early after a TBI may heighten the chances that a person will suffer unprovoked seizures later.
Cerebral lacerations usually accompany other brain injuries and are often found with skull fractures on both sides of the head. Frequently occurring in the same areas as contusions, lacerations are particularly common in the inferior frontal lobes and the poles of the temporal lobes. When associated with diffuse axonal injury, the corpus callosum and the brain stem are common locations for laceration. Lacerations are very common in penetrating and perforating head trauma and frequently accompany skull fractures; however, they may also occur in the absence of skull fracture. Lacerations, which may result when brain tissue is stretched, are associated with intraparenchymal bleeding (bleeding into the brain tissue).
Post-traumatic seizures (PTS) are seizures that result from traumatic brain injury (TBI), brain damage caused by physical trauma. PTS may be a risk factor for post-traumatic epilepsy (PTE), but a person who has a seizure or seizures due to traumatic brain injury does not necessarily have PTE, which is a form of epilepsy, a chronic condition in which seizures occur repeatedly. However, "PTS" and "PTE" may be used interchangeably in medical literature.
Seizures are usually an indication of a more severe TBI. Seizures that occur shortly after a person suffers a brain injury may further damage the already vulnerable brain. They may reduce the amount of oxygen available to the brain, cause excitatory neurotransmitters to be released in excess, increase the brain's metabolic need, and raise the pressure within the intracranial space, further contributing to damage. Thus, people who suffer severe head trauma are given anticonvulsant medications as a precaution against seizures.
Around 5–7% of people hospitalized with TBI have at least one seizure. PTS are more likely to occur in more severe injuries, and certain types of injuries increase the risk further. The risk that a person will suffer PTS becomes progressively lower as time passes after the injury. However, TBI survivors may still be at risk over 15 years after the injury. Children and older adults are at a higher risk for PTS.
Post-traumatic epilepsy (PTE) is a form of epilepsy that results from brain damage caused by physical trauma to the brain (traumatic brain injury, abbreviated TBI). A person with PTE suffers repeated post-traumatic seizures (PTS, seizures that result from TBI) more than a week after the initial injury. PTE is estimated to constitute 5% of all cases of epilepsy and over 20% of cases of symptomatic epilepsy (in which seizures are caused by an identifiable organic brain condition).
It is not known how to predict who will develop epilepsy after TBI and who will not. However, the likelihood that a person will develop PTE is influenced by the severity and type of injury; for example penetrating injuries and those that involve bleeding within the brain confer a higher risk. The onset of PTE can occur within a short time of the physical trauma that causes it, or months or years after. People with head trauma may remain at a higher risk for seizures than the general population even decades after the injury. PTE may be caused by several biochemical processes that occur in the brain after trauma, including overexcitation of brain cells and damage to brain tissues by free radicals.
Diagnostic measures include electroencephalography (EEG) and brain imaging techniques such as magnetic resonance imaging, but these are not totally reliable. Antiepileptic drugs do not prevent the development of PTE after head injury, but may be used to treat the condition if it does occur. When medication does not work to control the seizures, surgery may be needed. Modern surgical techniques for PTE have their roots in the 19th century, but trepanation (cutting a hole in the skull) may have been used for the condition in ancient cultures.