Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Obesity hypoventilation syndrome is a form of sleep disordered breathing. Two subtypes are recognized, depending on the nature of disordered breathing detected on further investigations. The first is OHS in the context of obstructive sleep apnea; this is confirmed by the occurrence of 5 or more episodes of apnea, hypopnea or respiratory-related arousals per hour (high apnea-hypopnea index) during sleep. The second is OHS primarily due to "sleep hypoventilation syndrome"; this requires a rise of CO levels by 10 mmHg (1.3 kPa) after sleep compared to awake measurements and overnight drops in oxygen levels without simultaneous apnea or hypopnea. Overall, 90% of all people with OHS fall into the first category, and 10% in the second.
Most people with obesity hypoventilation syndrome have concurrent obstructive sleep apnea, a condition characterized by snoring, brief episodes of apnea (cessation of breathing) during the night, interrupted sleep and excessive daytime sleepiness. In OHS, sleepiness may be worsened by elevated blood levels of carbon dioxide, which causes drowsiness ("CO narcosis"). Other symptoms present in both conditions are depression, and hypertension (high blood pressure) that is difficult to control with medication. The high carbon dioxide can also cause headaches, which tend to be worsening in the morning.
The low oxygen level leads to physiologic constriction of the pulmonary arteries to correct ventilation-perfusion mismatching, which puts excessive strain on the right side of the heart. When this leads to right sided heart failure, it is known as "cor pulmonale". Symptoms of this disorder occur because the heart has difficulty pumping blood from the body through the lungs. Fluid may, therefore, accumulate in the skin of the legs in the form of edema (swelling), and in the abdominal cavity in the form of ascites; decreased exercise tolerance and exertional chest pain may occur. On physical examination, characteristic findings are the presence of a raised jugular venous pressure, a palpable parasternal heave, a heart murmur due to blood leaking through the tricuspid valve, hepatomegaly (an enlarged liver), ascites and leg edema. Cor pulmonale occurs in about a third of all people with OHS.
CHS is associated with respiratory arrests during sleep and, in some cases, to neuroblastoma (tumors of the sympathetic ganglia), Hirschsprung disease (partial agenesis of the enteric nervous system), dysphagia (difficulty swallowing) and anomalies of the pupilla. Other symptoms include darkening of skin color from inadequate amounts of oxygen, drowsiness, fatigue, headaches, and an inability to sleep at night. Those suffering from Ondine's curse also have a sensitivity to sedatives and narcotics, which makes respiration even more difficult. A low concentration of oxygen in the red blood cells also may cause hypoxia-induced pulmonary vasoconstriction and pulmonary hypertension, culminating in cor pulmonale or a failure of the right side of the heart. Associated complications may also include gastro-esophageal reflux, ophthalmologic issues, seizures, recurrent pneumonia, developmental delays, learning disabilities and episodes of fainting and temperature disregulation.
Symptoms and signs of early hypercapnia include flushed skin, full pulse, tachypnea, dyspnea, extrasystoles, muscle twitches, hand flaps, reduced neural activity, and possibly a raised blood pressure. According to other sources, symptoms of mild hypercapnia might include headache, confusion and lethargy. Hypercapnia can induce increased cardiac output, an elevation in arterial blood pressure, and a propensity toward arrhythmias. Hypercapnia may increase pulmonary capillary resistance. In severe hypercapnia (generally PaCO greater than 10 kPa or 75 mmHg), symptomatology progresses to disorientation, panic, hyperventilation, convulsions, unconsciousness, and eventually death.
Central hypoventilation syndrome (CHS) is a respiratory disorder that results in respiratory arrest during sleep. CHS can either be congenital (CCHS) or acquired (ACHS) later in life. It is fatal if untreated. It is also known as Ondine's curse.
ACHS can develop as a result of severe injury or trauma to the brain or brainstem. Congenital cases are very rare and involve a failure of autonomic control of breathing. In 2006, there were only about 200 known cases worldwide. As of 2008, only 1000 total cases were known. The diagnosis may be delayed because of variations in the severity of the manifestations or lack of awareness in the medical community, particularly in milder cases. However, as there have been cases where asymptomatic family members also were found to have CCHS, it may be that these figures only reflect those found to require mechanical ventilation. In all cases, episodes of apnea occur in sleep, but in a few patients, at the most severe end of the spectrum, apnea also occurs while awake.
Although rare, cases of long-term untreated CCHS have been reported and are termed late onset CCHS (LO-CCHS). Cases that go undiagnosed until later life and middle age, although the symptoms are usually obvious in retrospect. There have, however, even been cases of LO-CCHS where family members found to have it have been asymptomatic. Again, lack of awareness in the medical community may cause such a delay. CCHS susceptibility is not known to be affected by gender.
Disorders like congenital central hypoventilation syndrome (CCHS) and ROHHAD (rapid-onset obesity, hypothalamic dysfunction, hypoventilation, with autonomic dysregulation) are recognized as conditions that are associated with hypoventilation. CCHS may be a significant factor in some cases of sudden infant death syndrome (SIDS), often termed "cot death" or "crib death".
The opposite condition is hyperventilation (too much ventilation), resulting in low carbon dioxide levels (hypocapnia), rather than hypercapnia.
Hypercapnia, also known as hypercarbia and CO retention, is a condition of abnormally elevated carbon dioxide (CO) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs.
Hypercapnia normally triggers a reflex which increases breathing and access to oxygen (O), such as arousal and turning the head during sleep. A failure of this reflex can be fatal, for example as a contributory factor in sudden infant death syndrome.
Hypercapnia is the opposite of hypocapnia, the state of having abnormally reduced levels of carbon dioxide in the blood. Hypercapnia is from the Greek "hyper" = "above" or "too much" and "kapnos" = "smoke".
The most common hypopnea symptom is excessive sleepiness, which results from constant sleep interruption. People with hypopnea due to airflow obstruction often have loud, heavy snoring that is interrupted with choking sounds or loud snorts followed by periods of silence, because not enough air can flow into the lungs through the mouth and nose. The periods of silence can last 20 seconds or longer and can happen many times each hour, resulting in poor sleep and reduced levels of oxygen in the blood.
Other symptoms of hypopnea may include depression, forgetfulness, mood or behavior changes, trouble concentrating, loss of energy, nervousness, and morning headaches. Not all people with hypopnea experience all of these symptoms and not everyone who has these symptoms has hypopnea.
Hypopnea or hypopnoea is overly shallow breathing or an abnormally low respiratory rate. Hypopnea is defined by some to be less severe than apnea (the complete cessation of breathing), while other researchers have discovered hypopnea to have a "similar if not indistinguishable impact" on the negative outcomes of sleep breathing disorders. In sleep clinics, obstructive sleep apnea syndrome or obstructive sleep apnea–hypopnea syndrome is normally diagnosed based on the frequent presence of apneas and/or hypopneas rather than differentiating between the two phenomena. Hypopnea is typically defined by a decreased amount of air movement into the lungs and can cause oxygen levels in the blood to drop. It commonly is due to partial obstruction of the upper airway.
Hypopnea during sleep is classed as a sleep disorder. With moderate to severe hypopnea, sleep is disturbed such that patients may get a full night's sleep but still not feel rested because they did not get the right kind of sleep. The disruption in breathing causes a drop in blood oxygen level, which may in turn disrupt the stages of sleep.
Daytime hypopnea events, however, are mostly limited to those with severely compromised respiratory muscles, as occurs in certain neuromuscular diseases or compromised central respiratory drive, as occurs in conditions such as acquired or congenital central hypoventilation syndrome (ACHS or CCHS). Daytime hypopnea can also cause a drop in blood oxygen level.
Respiratory acidosis can be acute or chronic.
- In "acute respiratory acidosis", the "Pa"CO is elevated above the upper limit of the reference range (over 6.3 kPa or 45 mm Hg) with an accompanying acidemia (pH <7.36).
- In "chronic respiratory acidosis", the "Pa"CO is elevated above the upper limit of the reference range, with a normal blood pH (7.35 to 7.45) or near-normal pH secondary to renal compensation and an elevated serum bicarbonate (HCO >30 mm Hg).
Acute respiratory acidosis occurs when an abrupt failure of ventilation occurs. This failure in ventilation may be caused by depression of the central respiratory center by cerebral disease or drugs, inability to ventilate adequately due to neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis, Guillain–Barré syndrome, muscular dystrophy), or airway obstruction related to asthma or chronic obstructive pulmonary disease (COPD) exacerbation.
Ventilation Perfusion mismatch or "V/Q defects" are defects in total lung ventilation perfusion ratio. It is a condition in which one or more areas of the lung receive oxygen but no blood flow, or they receive blood flow but no oxygen due to some diseases and disorders.
The V/Q ratio of a healthy lung is approximately equal to 0.8, as normal lungs are not perfectly matched., which means the rate of alveolar ventilation to the rate of pulmonary blood flow is roughly equal.
The ventilation perfusion ratio can be measured by measuring the A-a gradient i.e. the alveolar-arterial gradient.
The variable presentation of ROHHAD includes the following main symptoms:
- Hyperphagia and obesity by age of 10 years - (median age 3 years);
- Respiratory Manifestations:
- Alveolar Hypoventilation (median onset age 6.2 years);
- Cardiorespiratory arrest;
- Reduced Carbon Dioxide Ventilatory Response;
- Obstructive sleep apnea.
- Thermal or other hypothalamic dysregulations, with autonomic dysregulation by median age 3.6 years:
- Failed Growth Hormone Stimulation;
- Adipsic hypernatremia (inability to feel thirst to keep normal hydration);
- Hypernatremia;
- Hyperprolactinemia;
- Hyperphagia;
- Diabetes insipidus;
- Ophthalmologic Manifestations;
- Thermal Dysregulation;
- Gastrointestinal dysmotility;
- Altered Perception of Pain;
- Altered Sweating;
- Cold Hands and Feet.
- Neurobehavioral disorders;
- Tumors of neural crest origin.
Clinically overlapping cases exist because CCHS phenotype can also include autonomic nervous system dysregulation, or tumors of neural crest origin.
Respiratory failure results from inadequate gas exchange by the respiratory system, meaning that the arterial oxygen, carbon dioxide or both cannot be kept at normal levels. A drop in the oxygen carried in blood is known as hypoxemia; a rise in arterial carbon dioxide levels is called hypercapnia. Respiratory failure is classified as either Type I or Type II, based on whether there is a high carbon dioxide level. The definition of respiratory failure in clinical trials usually includes increased respiratory rate, abnormal blood gases (hypoxemia, hypercapnia, or both), and evidence of increased work of breathing.
The normal partial pressure reference values are: oxygen PaO more than , and carbon dioxide PaCO lesser than .
Hypoxemia (PaO2 6.0kPa).
The basic defect in type 2 respiratory failure is characterized by:
Type 2 respiratory failure is caused by inadequate alveolar ventilation; both oxygen and carbon dioxide are affected. Defined as the buildup of carbon dioxide levels (PCO) that has been generated by the body but cannot be eliminated. The underlying causes include:
- Increased airways resistance (chronic obstructive pulmonary disease, asthma, suffocation)
- Reduced breathing effort (drug effects, brain stem lesion, extreme obesity)
- A decrease in the area of the lung available for gas exchange (such as in chronic bronchitis)
- Neuromuscular problems (Guillain–Barré syndrome, motor neuron disease)
- Deformed (kyphoscoliosis), rigid (ankylosing spondylitis), or flail chest.
Hypoventilation may be caused by:
- A medical condition such as stroke affecting the brainstem
- Voluntary breath-holding or underbreathing, for example, hypoventilation training or Buteyko
- Medication or drugs, typically when taken in accidental or intentional overdose. Opioids in particular are known to cause respiratory depression. Examples of opioids include pharmaceuticals such as oxycodone and hydromorphone.
- Hypocapnia, which stimulates hypoventilation
- Chronic mountain sickness, a mechanism to conserve energy.
Currently there are no official tests or treatments for ROHHAD. Each child has the symptoms above at different ages, yet most symptoms are eventually present. Many children are misdiagnosed or are never diagnosed until alveolar hypoventilation occurs.
Let us consider some scenarios where there is a defect in ventilation and/ or perfusion of the lungs.
In condition such as pulmonary embolism, the pulmonary blood flow is affected, thus the ventilation of the lung is adequate, however there is a perfusion defect with defect in blood flow. Gas exchange thus becomes highly inefficient leading to hypoxemia as measured by arterial oxygenation. A ventilation perfusion scan or lung scintigraphy shows some areas of lungs being ventilated but not adequately perfused. This also leads to a high A-a gradient which is not responsive to oxygen
In conditions with right to left shunts, there is again a ventilation perfusion defect with high A-a gradient. However, the A-a gradient is responsive to oxygen therapy. In cases of right to left shunts more of deoxygenated blood mixes with oxygenated blood from the lungs and thus to a small extent the condition might neutralize the high A-a gradient with pure oxygen therapy.
Patient with parenchymal lung diseases will have an increased A-a gradient with moderate response to oxygen therapy.
A patient with hypoventilation will have complete response to 100% oxygen therapy
Metabolic alkalosis is a metabolic condition in which the pH of tissue is elevated beyond the normal range (7.35–7.45). This is the result of decreased hydrogen ion concentration, leading to increased bicarbonate, or alternatively a direct result of increased bicarbonate concentrations.
Asphyxia or asphyxiation is a condition of severely deficient supply of oxygen to the body that arises from abnormal breathing. An example of asphyxia is choking. Asphyxia causes generalized hypoxia, which affects primarily the tissues and organs. There are many circumstances that can induce asphyxia, all of which are characterized by an inability of an individual to acquire sufficient oxygen through breathing for an extended period of time. Asphyxia can cause coma or death.
In 2015 about 9.8 million cases of unintentional suffocation occurred which resulted in 35,600 deaths. The word asphyxia is from Ancient Greek "without" and , "squeeze" (throb of heart).
Situations that can cause asphyxia include but are not limited to: the constriction or obstruction of airways, such as from asthma, laryngospasm, or simple blockage from the presence of foreign materials; from being in environments where oxygen is not readily accessible: such as underwater, in a low oxygen atmosphere, or in a vacuum; environments where sufficiently oxygenated air is present, but cannot be adequately breathed because of air contamination such as excessive smoke.
Other causes of oxygen deficiency include
but are not limited to:
- Acute respiratory distress syndrome
- Carbon monoxide inhalation, such as that from a car exhaust and the smoke's emission from a lighted cigarette: carbon monoxide has a higher affinity than oxygen to the hemoglobin in the blood's red blood corpuscles, bonding with it tenaciously, and, in the process, displacing oxygen and preventing the blood from transporting oxygen around the body
- Contact with certain chemicals, including pulmonary agents (such as phosgene) and blood agents (such as hydrogen cyanide)
- Drowning
- Drug overdose
- Exposure to extreme low pressure or vacuum to the pattern (see space exposure)
- Hanging, specifically suspension or short drop hanging
- Self-induced hypocapnia by hyperventilation, as in shallow water or deep water blackout and the choking game
- Inert gas asphyxiation
- Congenital central hypoventilation syndrome, or primary alveolar hypoventilation, a disorder of the autonomic nervous system in which a patient must consciously breathe; although it is often said that persons with this disease will die if they fall asleep, this is not usually the case
- Respiratory diseases
- Sleep apnea
- A seizure which stops breathing activity
- Strangling
- Breaking the wind pipe.
- Prolonged exposure to chlorine gas
The causes of metabolic alkalosis can be divided into two categories, depending upon urine chloride levels.
This syndrome is similar to Bardet–Biedl syndrome (BBS). http://omim.org/entry/210350
The Bardet–Biedl syndrome (BBS) is a ciliopathic human genetic disorder that produces many effects and affects many body systems. It is characterized principally by obesity, retinitis pigmentosa, polydactyly, hypogonadism, and kidney failure in some cases. Historically, mental retardation has been considered a principal symptom but is now not regarded as such.
Dunnigan-type familial partial lipodystrophy, also known as FPLD Type II and abbreviated as (FPLD2), is a rare monogenic form of insulin resistance characterized by loss of subcutaneous fat from the extremities, trunk, and gluteal region. FPLD recapitulates the main metabolic attributes of the insulin resistance syndrome, including central obesity, hyperinsulinemia, glucose intolerance and diabetes usually type 2, dyslipidemia, hypertension, and early endpoints of atherosclerosis. It can also result in hepatic steatosis. FPLD results from mutations in LMNA gene, which is the gene that encodes nuclear lamins A and C.
The side effects and seriousness of Bardet-Biedl disorder fluctuates significantly even among people inside their family. affected people won't have the greater part of the indications talked about underneath. Moreover, the seriousness of particular indications may shift enormously also. The effects of this disorder include cone-rod dystrophy, postaxial polydactyly, truncal obesity, kidney abnormalities and learning difficulties.