Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This is a very rare situation, in which the extra digit is on the ring, middle or index finger. Of these fingers, the index finger is most often affected, whereas the ring finger is rarely affected.
This type of polydactyly can be associated with syndactyly, cleft hand and several syndromes.
Polysyndactyly presents various degrees of syndactyly affecting fingers three and four.
This is a less common situation, in which the affectation is on the side of the hand towards the thumb. Radial polydactyly refers to the presence of an extra digit (or extra digits) on the radial side of the hand. It is most frequent in Indian populations and it is the second most common congenital hand disorder. The incidence of radial polydactyly is reported as 1 in every 3,000 live births. The clinical features of radial polydactyly will depend upon the extent of duplication.
Radial polydactyly varies from a barely visible radial skin tag to complete duplication. Thumb polydactyly varies from barely visible broadening of the distal phalanx to full duplication of the thumb including the first metacarpal.
Radial polydactyly is frequently associated with several syndromes.
In the above brachydactyly syndromes, short digits are the most prominent of the anomalies, but in many other syndromes (Down syndrome, Rubinstein-Taybi syndrome, etc.), brachydactyly is a minor feature compared to the other anomalies or problems comprising the syndrome.
Very frequent signs
- Abnormal gastrointestinal tract
- Absent pectoral muscles
- Brachydactyly (Short fingers)
- Dextrocardia
- Diaphragmatic hernia/defect
- Humerus absent/abnormal
- Liver/biliary tract anomalies
- Maternal diabetes
- Oligodactyly/missing fingers
- Radius absent/abnormal
- Rhizomelic micromelia (relatively shorter proximal segment of the limbs compared to the middle and the distal segments)
- Sparsity or abnormality of axillary hair on affected side
- Syndactyly of fingers (webbing)
- Ulna absent/abnormal
- Upper limb asymmetry
- Abnormal rib
- Simian crease on affected side
Frequent signs
- Hypoplastic/absent nipples
- Scapula anomaly
Occasional signs
- Agenesis/hypoplasia of kidneys
- Encephalocele/exencephaly
- Abnormal morphology of hypothalamic-hypophyseal axis
- Abnormal function of hypothalamic-hypophyseal axis
- Microcephaly
- Preaxial polydactyly
- Ureteric anomalies (reflux/duplex system)
- Vertebral segmentation anomaly
Brachydactyly (Greek βραχύς = "short" plus δάκτυλος = "finger"), is a medical term which literally means "shortness of the fingers and toes" (digits). The shortness is relative to the length of other long bones and other parts of the body. Brachydactyly is an inherited, usually dominant trait. It most often occurs as an isolated dysmelia, but can also occur with other anomalies as part of many congenital syndromes.
Nomograms for normal values of finger length as a ratio to other body measurements have been published. In clinical genetics the most commonly used index of digit length is the dimensionless ratio of the length of the 3rd (middle) finger to the hand length. Both are expressed in the same units (centimeters, for example) and are measured in an open hand from the fingertip to the principal creases where the finger joins the palm and where the palm joins the wrist.
The cranium consists of three main sections including the base of the cranium (occipital bone), the face (frontal bone), and the top (parietal bones) and sides (temporal bone) of the head. Most of the bones of the cranium are permanently set into place prior to birth. However, the temporal and parietal bones are separated by sutures, which remain open, allowing the head to slightly change in shape during childbirth. The cranial sutures eventually close within the first couple of years following birth, after the brain has finished growing.
In individuals with SCS, the coronal suture separating the frontal bones from the parietal bones, closes prematurely (craniosynostosis), occasionally even before birth. If the coronal suture closes asymmetrically or unilaterally, then the face and forehead will form unevenly, from side-to-side. People with SCS have pointy, tower-like heads because their brain is growing faster than their skull, resulting in increased intracranial pressure (ICP) and causing the top of the head and/or forehead to bulge out to allow for brain growth. The face appears uneven, particularly in the areas of the eyes and cheeks, and the forehead appears wide and tall.
Because of the abnormal forehead, there is less space for the normal facial features to develop. This results in shallow eye sockets and flat cheekbones. The shallow eye sockets make the eyes more prominent or bulging and cause the eyes to be more separated than normal (hypertelorism). The underdeveloped eye sockets, cheekbones, and lower jaw cause the face to appear flat. Furthermore, the minor downward slant of the eyes along with the drooping eyelids (ptosis) adds to the overall unevenness of the face.
The Pai Syndrome is a rare subtype of frontonasal dysplasia. It is a triad of developmental defects of the face, comprising midline cleft of the upper lip, nasal and facial skin polyps and central nervous system lipomas. When all the cases are compared, a difference in severity of the midline cleft of the upper lip can be seen. The mild form presents with just a gap between the upper teeth. The severe group presents with a complete cleft of the upper lip and alveolar ridge.
Nervous system lipomas are rare congenital benign tumors of the central nervous system, mostly located in the medial line and especially in the corpus callosum. Generally, patients with these lipomas present with strokes. However, patients with the Pai syndrome don’t. That is why it is suggested that isolated nervous system lipomas have a different embryological origin than the lipomas present in the Pai syndrome. The treatment of CNS lipomas mainly consists of observation and follow up.
Skin lipomas occur relatively often in the normal population. However, facial and nasal lipomas are rare, especially in childhood. However, the Pai syndrome often present with facial and nasal polyps. These skin lipomas are benign, and are therefore more a cosmetic problem than a functional problem.
The skin lipomas can develop on different parts of the face. The most common place is the nose. Other common places are the forehead, the conjunctivae and the frenulum linguae. The amount of skin lipomas is not related to the severity of the midline clefting.
Patients with the Pai syndrome have a normal neuropsychological development.
Until today there is no known cause for the Pai syndrome.
The large variety in phenotypes make the Pai syndrome difficult to diagnose. Thus the incidence of Pai syndrome seems to be underestimated.
Individuals with SCS are all affected differently. Even within the same family, affected individuals have different features. The majority of individuals with SCS are moderately affected, with uneven facial features and a relatively flat face due to underdeveloped eye sockets, cheekbones, and lower jaw. In addition to the physical abnormalities, people with SCS also experience growth delays, which results in a relatively short stature. Although, most individuals with SCS are of normal intelligence, some individuals may have mild to moderate mental retardation (IQ from 50-70). More severe cases of SCS, with more serious facial deformities, occurs when multiple cranial sutures close prematurely.
Poland syndrome, named after British surgeon Alfred Poland, is a rare birth defect characterized by underdevelopment or absence of the chest muscle (pectoralis) on one side of the body, and usually also webbing of the fingers (cutaneous syndactyly) of the hand on the same side (the ipsilateral hand). In most affected individuals, the missing part is the large section of the muscle that normally attaches to the upper arm on one side and the breastbone (sternum) on the other. Other abnormalities may occur on the affected side of the torso. In some cases, additional muscles in the chest wall, side, and shoulder are missing or underdeveloped.
There may also be rib cage abnormalities, such as shortened ribs, and the ribs may be noticeable due to less fat under the skin (subcutaneous fat). Breast and nipple abnormalities may also occur, and underarm (axillary) hair is sometimes sparse or abnormally placed. In most cases, the abnormalities in the chest area do not cause health problems or affect movement. Poland syndrome most often affects the right side of the body, and occurs more often in males than in females.
It is usually considered a unilateral condition. Some have claimed that the term can be applied in bilateral presentation, but others recommend using alternate terminology in those cases.
People who are affected by Liebenberg Syndrome suffer from three main symptoms:
1. Dysplasia (improper formation) of the bony components of the elbow
2. Abnormal shape of carpal bones
3. Brachydactyly, a symptom where the fingers and toes are shorter than normal.
Signs and symptoms include:
- syndromic facies
- hearing loss
- facial paralysis
Symbrachydactyly is a congenital abnormality, characterized by limb anomalies consisting of brachydactyly, cutaneous syndactyly and global hypoplasia of the hand or foot. In many cases, bones will be missing from the fingers and some fingers or toes may be missing altogether. The ends of the hand may have "nubbins"—small stumps where the finger would have developed, which may have tiny residual nails.
Symbrachydactyly has been reported to appear without other combined limb anomalies and usually in one arm in 1 in 30,000 births to 1 in 40,000 births.
The cause of symbrachydactyly is unknown. One possible cause might be an interruption of the blood supply to the developing arm at four to six weeks of pregnancy. There is no link to anything the mother did or did not do during pregnancy. There is also no increased risk of having another child with the same condition or that the child will pass the condition on to his or her children.
In most cases, children born with symbrachydactyly are able to adapt to their physical limitations and experience a fully functional life with no treatment. Most children with this condition can use their hands well enough to do all the usual things children do. Possible treatment includes surgery or a routine of regularly stretching the fingers.
Ectodermal dysplasia is characterized by absent sweat glands resulting in dry (hypohydrotic), often scale-like skin, sparse and usually coarse scalp hair that is often blonde, sparse eyebrows and eyelashes, and small brittle nails. In addition, abnormalities of ectodermal derivatives, neuroectodermal derivatives, and mesectodermal derivatives are often found. The ectodermal derivative abnormalities can affect the epidermis including mammary, pituitary and sweat glands, as well as hairs, dental enamel, nails, lens, and the internal ear. Neuroectodermal derivatives that can be affected include sensory placodes, cutaneous pigmental cells, and hair buds. Mesectodermal derivatives affected can include the dermis, hypodermis, dentin, head muscles and conjunctival cells, cervicofacial vascular endothelial cells, and part of the maxillofacial skeleton.
The hypohydrotic symptoms of ectodermal dysplasia described above are evidenced not only in the skin of affected individuals, but also in their phonation and voice production. Because the vocal folds may not be as hydrated as is necessary during the adduction phase of vocal fold vibration (due to lack of lubrication), a complete seal may not be accomplished between the folds and mucosal wave movement may be disrupted. This results in air escapement between the folds and the production of breathy voice, which often accompanies the skin abnormalities of ectodermal dysplasia.
Many of the characteristic facial features result from the premature fusion of the skull bones (craniosynostosis). The head is unable to grow normally, which leads to a high prominent forehead (turribrachycephaly), and eyes that appear to bulge (proptosis) and are wide-set (hypertelorism). In addition, there is an underdeveloped upper jaw (maxillary hypoplasia). About 50 percent of children with Pfeiffer syndrome have hearing loss, and dental problems are also common.
In people with Pfeiffer syndrome, the thumbs and first (big) toes are wide and bend away from the other digits (pollex varus and hallux varus). Unusually short fingers and toes (brachydactyly) are also common, and there may be some webbing or fusion between the digits (syndactyly).
This is a classification based on the embryological cause of FND.
Ectrodactyly involves the deficiency or absence of one or more central digits of the hand or foot and is also known as split hand–split foot malformation (SHFM). The hands and feet of people with ectrodactyly are often described as "claw-like" and may include only the thumb and one finger (usually either the little finger, ring finger, or a syndactyly of the two) with similar abnormalities of the feet.
Ectodermal dysplasia describes abnormalities of structures derived from the embryonic ectoderm. These abnormalities affect both the superficial ectodermal layer, as well as the mesectodermal layer constituted by the neural crest.
Robinow noted the resemblance of affected patients' faces to that of a fetus, using the term "fetal facies" to describe the appearance of a small face and widely spaced eyes. Clinical features also may include a short, upturned nose, a prominent forehead, and a flat nasal bridge. The upper lip may be "tented", exposing dental crowding, "tongue tie", or gum hypertrophy.
Though the eyes do not protrude, abnormalities in the lower eyelid may give that impression. Surgery may be necessary if the eyes cannot close fully. In addition, the ears may be set low on the head or have a deformed pinna.
Patients suffer from dwarfism, short lower arms, small feet, and small hands. Fingers and toes may also be abnormally short and laterally or medially bent. The thumb may be displaced and some patients, notably in Turkey, experience ectrodactyly. All patients often suffer from vertebral segmentation abnormalities. Those with the dominant variant have, at most, a single butterfly vertebra. Those with the recessive form, however, may suffer from hemivertebrae, vertebral fusion, and rib anomalies. Some cases resemble Jarcho-Levin syndrome or spondylocostal dysostosis.
Genital defects characteristically seen in males include a micropenis with a normally developed scrotum and testes. Sometimes, testicles may be undescended, or the patient may suffer from hypospadias. Female genital defects may include a reduced size clitoris and underdeveloped labia minora. Infrequently, the labia majora may also be underdeveloped. Some research has shown that females may experience vaginal atresia or haematocolpos.
The autosomal recessive form of the disorder tends to be much more severe. Examples of differences are summarized in the following table:
Nasodigitoacoustic syndrome is congenital and is characterized by a number of nasal, facial and cranial features. These include a broad and high, sometimes depressed nasal bridge (top of the nose, between the eyes) and a flattened nasal tip. This can give the nose a shortened, arch-like appearance. Hypertelorism (unusually wide-set eyes), prominent frontal bones and supraorbital ridge (the eyebrow ridge), bilateral epicanthic folds (an extra flap of skin over the eyelids), a broad forehead and an overall enlarged head circumference have also been observed. A bulging of the upper lip with an exaggerated cupid's bow shape, and maxillary hypoplasia (underdevelopment of the upper jaw) with retraction have also been reported.
Several anomalies affecting the digits (fingers and toes) have been observed with the syndrome. A broadening of the thumbs and big toes (halluces) was reported in two brothers. The broadening was apparent in all distal phalanges of the fingers, although the pinkies were unaffected yet appeared to be clinodactylic (warped, or bent toward the other fingers). Additional eports described this broadness of the thumbs and big toes, with brachydactyly (shortness) in the distal phalanges of the other digits except the pinkies in affected individuals. On X-rays of a two-year-old boy with the disorder, the brachydactyly was shown to be caused by shortening of epiphyses (joint-ends) of the distal phalanges. The broadness and brachydactyly of the big toes in particular may give them a stunted, rounded and stub-like appearance.
The auditory, or "acoustic" abnormalities observed with the syndrome include sensorineural hearing loss and hoarseness. Two affected Turkish brothers with a mild form of this hearing loss, and a hoarse voice were reported. A laryngoscopic examination of both brothers revealed swelling of the vocal cords, and a malformed epiglottis. Sensorineural-associated hearing impairment and hoarsness was also observed in a 10-year-old girl and her father, and in a number of other cases.
Other characteristics seen with the syndrome include developmental delay, growth retardation, pulmonary stenosis (an obstruction of blood-flow from the right ventricle of the heart to the pulmonary artery) with associated dyspnea (shortness of breath), and renal agenesis (failure of the kidneys to develop during the fetal period). Undescended testes, hyperactivity and aggressive behavior have also been noted.
Dysmelia (from Gr. δυσ- "dys", "bad" + μέλ|ος "mél|os", "limb" + Eng. suff. -ia) is a congenital disorder of a limb resulting from a disturbance in embryonic development.
Many people with this disorder have a premature fusion of skull bones along the coronal suture. Not every case has had craniosynostosis however. Other parts of the skull may be malformed as well. This will usually cause an abnormally shaped head, wide-set eyes, low set ears and flattened cheekbones in these patients. About 5 percent of affected individuals have an enlarged head (macrocephaly). There may also be associated hearing loss in 10-33% of cases and it is important for affected individuals to have hearing tests to check on the possibility of a problem. They can lose about 33-100% of hearing.
Most people with this condition have normal intellect, but developmental delay and learning disabilities are possible. The signs and symptoms of Muenke syndrome vary among affected people, and some findings overlap with those seen in other craniosynostosis syndromes. Between 6 percent and 7 percent of people with the gene mutation associated with Muenke syndrome do not have any of the characteristic features of the disorder.
Pfeiffer syndrome is a very rare genetic disorder characterized by the premature fusion of certain bones of the skull which affects the shape of the head and face. In addition, the syndrome includes abnormalities of the hands (such as wide and deviated thumbs) and feet (such as wide and deviated big toes). Pfeiffer syndrome affects about 1 in 100,000 births.
Individuals affected by this disorder appear normal at birth. As the infant grows, however, their arms and legs do not develop properly and their body becomes thicker and shorter than normal The following are characteristics consistent with this condition:
- Brachydactyly syndrome
- Short stature
- Micromelia
- Skeletal dysplasia
- Abnormality of femur
Liebenberg Syndrome is a rare autosomal genetic disease that involves a deletion mutation upstream of the PITX1 gene, which is one that's responsible for the body's organization, specifically in forming lower limbs. In animal studies, when this deletion was introduced to developing birds, their wing buds were noted to take on limb-like structures.
The condition was first described by Dr. F. Liebenberg in 1973 while he followed multiple generations of a South African family, but it has since been noticed in other family lineages across the world.
Dysmelia can refer to
- missing (aplasia) limbs: amelia, oligodactyly, congenital amputation e.g. Tibial or Radial aplasia
- malformation of limbs: shortening (micromelia, rhizomelia or mesomelia), ectrodactyly, phocomelia, meromelia, syndactyly, brachydactyly, club foot
- too many limbs: polymelia, polydactyly, polysyndactyly
- others: Tetraamelia, hemimelia, Symbrachydactyly
This condition is a skeletal dysplasia characterized by short stature, mild brachydactyly, kyphoscoliosis, abnormal gait, enlarged knee joints, precocious osteoarthropathy, platyspondyly, delayed epiphyseal ossification, mild metaphyseal abnormalities, short stature and short and bowed legs. Intelligence is normal.
Some patients may manifest premature pubarche and hyperandrogenism.
Other features that may form part of the syndrome include precocious costal calcification, small iliac bones, short femoral necks, coxa vara, short halluces and fused vertebral bodies.