Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms depend on whether the hyperparathyroidism is the result of parathyroid overactivity or secondary.
In primary hyperparathyroidism about 75% of people have no symptoms. The problem is often picked up during blood work for other reasons via a raised calcium. Many other people only have non-specific symptoms. Symptoms directly due to hypercalcemia are relatively rare, being more common in patients with malignant hypercalcemia. If present, common manifestations of hypercalcemia include weakness and fatigue, depression, bone pain, muscle soreness (myalgias), decreased appetite, feelings of nausea and vomiting, constipation, polyuria, polydipsia, cognitive impairment, kidney stones (See Foot Note) and osteoporosis. A history of acquired racquet nails (brachyonychia) may be indicative of bone resorption. Parathyroid adenomas are very rarely detectable on clinical examination. Surgical removal of a parathyroid tumor eliminates the symptoms in most patients.
In secondary hyperparathyroidism the parathyroid gland is behaving normally; clinical problems are due to bone resorption and manifest as bone syndromes such as rickets, osteomalacia and renal osteodystrophy.
The signs and symptoms of primary hyperparathyroidism are those of hypercalcemia. They are classically summarized by "stones, bones, abdominal groans, thrones and psychiatric overtones".
- "Stones" refers to kidney stones, nephrocalcinosis, and diabetes insipidus (polyuria and polydipsia). These can ultimately lead to renal failure.
- "Bones" refers to bone-related complications. The classic bone disease in hyperparathyroidism is osteitis fibrosa cystica, which results in pain and sometimes pathological fractures. Other bone diseases associated with hyperparathyroidism are osteoporosis, osteomalacia, and arthritis.
- "Abdominal groans" refers to gastrointestinal symptoms of constipation, indigestion, nausea and vomiting. Hypercalcemia can lead to peptic ulcers and acute pancreatitis. The peptic ulcers can be an effect of increased gastric acid secretion by hypercalcemia.
- "Thrones" refers to polyuria and constipation
- "Psychiatric overtones" refers to effects on the central nervous system. Symptoms include lethargy, fatigue, depression, memory loss, psychosis, ataxia, delirium, and coma.
Left ventricular hypertrophy may also be seen.
Other signs include proximal muscle weakness, itching, and band keratopathy of the eyes.
When subjected to formal research, symptoms of depression, pain, and gastric dysfunction seem to correlate with mild cases of hypercalcemia.
Bone and joint pain are common, as are limb deformities. The elevated PTH has also pleiotropic effects on the blood, immune system, and neurological system.
Secondary hyperparathyroidism (SHPT) refers to the excessive secretion of parathyroid hormone (PTH) by the parathyroid glands in response to hypocalcemia (low blood calcium levels) and associated hyperplasia of the glands. This disorder is especially seen in patients with chronic kidney failure. It is often—although not consistently—abbreviated as SHPT in medical literature.
Hyperparathyroidism is an increased parathyroid hormone (PTH) levels in the blood. This occurs either from the parathyroid glands inappropriately making too much PTH (primary hyperparathyroidism) or other events triggering increased production by the parathyroid glands (secondary hyperparathyroidism). Most people with primary disease have no symptoms at the time of diagnosis. In those with symptoms the most common is kidney stones with other potential symptoms including weakness, depression, bone pains, confusion, and increased urination. Both types increase the risk of weak bones.
Primary hyperparathyroidism in 80% of cases is due to a single benign tumor known as a parathyroid adenoma with most of the rest of the cases due to a multiple benign tumors. Rarely it may be due to parathyroid cancer. Secondary hyperparathyroidism typically occurs due to vitamin D deficiency, chronic kidney disease, or other causes of low blood calcium. Diagnosis of primary disease is by finding a high blood calcium and high PTH levels.
Primary hyperparathyroidism may be cured by removing the adenoma or overactive parathyroid glands. In those without symptoms, mildly increased blood calcium levels, normal kidneys, and normal bone density monitoring may be all that is required. The medication cinacalcet may also be used to decrease PTH levels. In those with very high blood calcium levels treatment may include large amounts of intravenous normal saline. Low vitamin D levels should be corrected.
Primary hyperparathyroidism is the most common form. In the developed world between one and four per thousand people are affected. It occurs three times more often in women than men and is typically diagnosed between the ages of 50 and 60. The disease was first described in the 1700s and in the late 1800s was determined to be related to the parathyroid. Surgery as a treatment was first carried out in 1925.
In contrast with primary hyperparathyroidism in adults, primary hyperparathyroidism in pediatric patients is considered a rare endocrinopathy. Pediatric primary hyperparathyroidism can be distinguished by its more severe manifestations, in contrast to the less intense manifestations in adult primary hyperparathyroidism. Multiple endocrine neoplasia is more likely to be associated with childhood and adolescent primary hyperparathyroidism. The fundamental skeletal radiologic manifestation include diffuse osteopenia, pathologic fractures and the coexistence of resorption and sclerosis at numerous sites. Skeletal lesions can be specifically bilateral, symmetric and multifocal, exhibiting different types of bone resorption. Pathologic fractures of the femoral neck and spine can potentially initiate serious complications. Because pediatric primary hyperparathyroidism is frequently associated with pathologic fractures it can be misdiagnosed as osteogenesis imperfecta. Pediatric patients with primary hyperparathyroidism are best remedied by parathyroidectomy. Early diagnosis of pediatric primary hyperparathyroidism is all-important to minimize disease complications and start off timely and relevant treatment.
It can be asymptomatic, but these symptoms may be present:
- Fatigue
- Headache
- High blood pressure
- Hypokalemia
- Hypernatraemia
- Hypomagnesemia
- Intermittent or temporary paralysis
- Muscle spasms
- Muscle weakness
- Numbness
- Polyuria
- Polydipsia
- Tingling
- Metabolic alkalosis
Most cases of familial hypocalciuric hypercalcemia are asymptomatic. Laboratory signs of FHH include:
- Hypercalcemia
- Hypocalciuria ( Ca excretion rate < 0.02 mmol/L)
- Hypermagnesemia
- High normal to mildly elevated parathyroid hormone
Familial hypocalciuric hypercalcemia (FHH) is a condition that can cause hypercalcemia, a serum calcium level typically above 10.2 mg/dL. It is also known as familial benign hypocalciuric hypercalcemia (FBHH) where there is usually a family history of hypercalcemia which is mild, a urine calcium to creatinine ratio <0.01, and urine calcium <200 mg/day.
The causes of primary hyperaldosteronism are adrenal hyperplasia and adrenal adenoma (Conn's syndrome).
These cause hyperplasia of aldosterone-producing cells of the adrenal cortex resulting in primary hyperaldosteronism.
The causes of secondary hyperaldosteronism are massive ascites, left ventricular failure, and cor pulmonale.
These act either by decreasing circulating fluid volume or by decreasing cardiac output, with resulting increase in renin release leading to secondary hyperaldosteronism.
Hypercalcemia is suspected to occur in approximately 1 in 500 adults in the general adult population. Like hypocalcemia, hypercalcemia can be non-severe and present with no symptoms, or it may be severe, with life-threatening symptoms. Hypercalcemia is most commonly caused by hyperparathyroidism and by malignancy, and less commonly by vitamin D intoxication, familial hypocalciuric hypercalcemia and by sarcoidosis. Hyperparathyroidism occurs most commonly in postmenopausal women. Hyperparathyroidism can be caused by a tumor, or adenoma, in the parathyroid gland or by increased levels of parathyroid hormone due to hypocalcemia. Approximately 10% of cancer sufferers experience hypercalcemia due to malignancy. Hypercalcemia occurs most commonly in breast cancer, lymphoma, prostate cancer, thyroid cancer, lung cancer, myeloma, and colon cancer. It may be caused by secretion of parathyroid hormone-related peptide by the tumor (which has the same action as parathyroid hormone), or may be a result of direct invasion of the bone, causing calcium release.
Symptoms of hypercalcemia include anorexia, nausea, vomiting, constipation, abdominal pain, lethargy, depression, confusion, polyuria, polydipsia and generalized aches and pains.
Tertiary hyperparathyroidism is a state of excessive secretion of parathyroid hormone (PTH) after a long period of secondary hyperparathyroidism and resulting in a high blood calcium level. It reflects development of autonomous (unregulated) parathyroid function following a period of persistent parathyroid stimulation.
The basis of treatment is still prevention in chronic kidney failure, starting medication and dietary restrictions long before dialysis treatment is initiated. Cinacalcet has greatly reduced the number of patients who ultimately require surgery for secondary hyperparathyroidism; however, approximately 5% of patients do not respond to medical therapy.
When secondary hyperparathyroidism is corrected and the parathyroid glands remain hyperfunctioning, it becomes tertiary hyperparathyroidism. The treatment of choice is surgical removal of three and one half parathyroid glands.
The neuromuscular symptoms of hypercalcemia are caused by a negative bathmotropic effect due to the increased interaction of calcium with sodium channels. Since calcium blocks sodium channels and inhibits depolarization of nerve and muscle fibers, increased calcium raises the threshold for depolarization. This results in diminished deep tendon reflexes (hyporeflexia), and skeletal muscle weakness. There is a general mnemonic for remembering the effects of hypercalcaemia: "Stones, Bones, Groans, Thrones and Psychiatric Overtones"
- Stones (renal or biliary) (see calculus)
- Bones (bone pain)
- Groans (abdominal pain, nausea and vomiting)
- Thrones (polyuria) resulting in dehydration
- Psychiatric overtones (Depression 30–40%, anxiety, cognitive dysfunction, insomnia, coma)
Other symptoms include cardiac arrhythmias (especially in those taking digoxin), fatigue, nausea, vomiting (emesis), anorexia, abdominal pain, constipation, & paralytic ileus. If renal impairment occurs as a result, manifestations can include polyuria, nocturia, and polydipsia. Psychiatric manifestation can include emotional instability, confusion, delirium, psychosis, & stupor. Limbus sign seen in eye due to hypercalcemia.
Hypercalcemia can result in an increase in heart rate and a positive inotropic effect (increase in contractility).
Symptoms are more common at high calcium blood values (12.0 mg/dL or 3 mmol/l). Severe hypercalcaemia (above 15–16 mg/dL or 3.75–4 mmol/l) is considered a medical emergency: at these levels, coma and cardiac arrest can result. The high levels of calcium ions decrease the neuron membrane permeability to sodium ions, thus decreasing excitability, which leads to hypotonicity of smooth and striated muscle. This explains the fatigue, muscle weakness, low tone and sluggish reflexes in muscle groups. The sluggish nerves also explain drowsiness, confusion, hallucinations, stupor and / or coma. In the gut this causes constipation. Hypocalcaemia causes the opposite by the same mechanism.
The major symptoms of OFC are bone pain or tenderness, bone fractures, and skeletal deformities such as bowing of the bones. The underlying hyperparathyroidism may cause kidney stones, nausea, constipation, fatigue and weakness. X-rays may indicate thin bones, fractures, bowing, and cysts. Fractures are most commonly localized in the arms, legs, or spine.
The addition of weight loss, appetite loss, vomiting, polyuria, and polydipsia to the aforementioned symptoms may indicate that OFC is the result of parathyroid carcinoma. Parathyroid carcinoma, an uncommon cancer of the parathyroid glands, is generally indicated by serum calcium levels higher than usual, even in comparison to the high serum calcium levels that OFC generally presents with. Symptoms are also often more severe. Generally, the presence of a palpable neck mass is also indicative of the cancer, occurring in approximately 50% of sufferers, but virtually nonexistent in individuals with OFC with a different origin.
Hypocalcemia is common and can occur unnoticed with no symptoms or, in severe cases, can have dramatic symptoms and be life-threatening. Hypocalcemia can be parathyroid related or vitamin D related. Parathyroid related hypocalcemia includes post-surgical hypoparathyroidism, inherited hypoparathyroidism, pseudohypoparathyroidism, and pseudo-pseudohypoparathyroidism. Post-surgical hypoparathyroidism is the most common form, and can be temporary (due to suppression of tissue after removal of a malfunctioning gland) or permanent, if all parathyroid tissue has been removed. Inherited hypoparathyroidism is rare and is due to a mutation in the calcium sensing receptor. Pseudohypoparathyroidism is maternally inherited and is categorized by hypocalcemia and hyperphosphatemia. Finally, pseudo-pseudohypoparathyroidism is paternally inherited. Patients display normal parathyroid hormone action in the kidney, but exhibit altered parathyroid hormone action in the bone.
Vitamin D related hypocalcemia may be associated with a lack of vitamin D in the diet, a lack of sufficient UV exposure, or disturbances in renal function. Low vitamin D in the body can lead to a lack of calcium absorption and secondary hyperparathyroidism (hypocalcemia and raised parathyroid hormone). Symptoms of hypocalcemia include numbness in fingers and toes, muscle cramps, irritability, impaired mental capacity and muscle twitching.
Signs and symptoms include ectopic calcification, secondary hyperparathyroidism, and renal osteodystrophy. Abnormalities in phosphate metabolism such as hyperphosphatemia are included in the definition of the new chronic kidney disease-mineral and bone disorder (CKD-MBD).
Primary hyperparathyroidism and malignancy account for about 90% of cases of hypercalcaemia.
There are several causes for this condition, including adrenal insufficiency, congenital adrenal hyperplasia, and medications (certain diuretics, NSAIDs, and ACE inhibitors).
- Primary Aldosterone deficiency
1. Primary adrenal insufficiency
2. Congenital adrenal hyperplasia (21 and 11β but not 17)
3. Aldosterone synthase deficiency
- Secondary Aldosterone deficiency
1. Secondary adrenal insufficiency
2. Diseases of the pituitary or hypothalamus
- Hyporeninemic hypoaldosteronism (due to decreased angiotensin 2 production as well as intra-adrenal dysfunction)
1. Renal dysfunction-most commonly diabetic nephropathy
2. NSAIDs
3. Ciclosporin
Osteitis fibrosa cystica is defined as the classic skeletal manifestation of advanced hyperparathyroidism. Under the ICD-10 classification system, established by the World Health Organization, OFC is listed under category E21.0, primary hyperparathyroidism.
Hyperphosphatemia is an electrolyte disturbance in which there is an abnormally elevated level of phosphate in the blood. Often, calcium levels are lowered (hypocalcemia) due to precipitation of phosphate with the calcium in tissues. Average phosphorus levels should be between 0.81 mmol/litre and 1.45 mmol/litre.
Renal osteodystrophy may exhibit no symptoms; if it does show symptoms, they include:
- Bone pain
- Joint pain
- Bone deformation
- Bone fracture
- The broader concept of chronic kidney disease-mineral and bone disorder (CKD-MBD) is not only associated with fractures but also with cardiovascular calcification, poor quality of life and increased morbidity and mortality in CKD patients (the so-called bone-vascular axis). These clinical consequences are acquiring such an importance that scientific working groups (such as the ERA-EDTA CKD-MBD Working Group) or international initiatives are trying to promote research in the field including basic, translational and clinical research.
Type 4 RTA is not actually a tubular disorder at all nor does it have a clinical syndrome similar to the other types of RTA described above. It was included in the classification of renal tubular acidoses as it is associated with a mild (normal anion gap) metabolic acidosis due to a "physiological" reduction in proximal tubular ammonium excretion (impaired ammoniagenesis), which is secondary to hypoaldosteronism, and results in a decrease in urine buffering capacity. Its cardinal feature is hyperkalemia, and measured urinary acidification is normal, hence it is often called hyperkalemic RTA or tubular hyperkalemia.
Causes include:
- Aldosterone deficiency (hypoaldosteronism): Primary vs. hyporeninemic (including diabetic nephropathy)
- Aldosterone resistance
1. Drugs: NSAIDs, ACE inhibitors and ARBs, Eplerenone, Spironolactone, Trimethoprim, Pentamidine
2. Pseudohypoaldosteronism
Hypoaldosteronism may result in hyperkalemia and is the cause of 'type 4 renal tubular acidosis', sometimes referred to as hyperkalemic RTA or tubular hyperkalemia. However, the acidosis, if present, is often mild. It can also cause urinary sodium wasting, leading to volume depletion and hypotension.
When adrenal insufficiency develops rapidly, the amount of Na+ lost from the extracellular fluid exceeds the amount excreted in the urine, indicating that Na+ also must be entering cells. When the posterior pituitary is intact, salt loss exceeds water loss, and the plasma Na+ falls. However, the plasma volume also is reduced, resulting in hypotension, circulatory insufficiency, and, eventually, fatal shock. These changes can be prevented to a degree by increasing the dietary NaCl intake. Rats survive indefinitely on extra salt alone, but in dogs and most humans, the amount of supplementary salt needed is so large that it is almost impossible to prevent eventual collapse and death unless mineralocorticoid treatment is also instituted.
In some patients, RTA shares features of both dRTA and pRTA. This rare pattern was observed in the 1960s and 1970s as a transient phenomenon in infants and children with dRTA (possibly in relation with some exogenous factor such as high salt intake) and is no longer observed. This form of RTA has also been referred to as juvenile RTA.
Combined dRTA and pRTA is also observed as the result of inherited carbonic anhydrase II deficiency. Mutations in the gene encoding this enzyme give rise to an autosomal recessive syndrome of osteopetrosis, renal tubular acidosis, cerebral calcification, and mental retardation. It is very rare and cases from all over the world have been reported, of which about 70% are from the Magreb region of North Africa, possibly due to the high prevalence of consanguinity there.
The kidney problems are treated as described above. There is no treatment for the osteopetrosis or cerebral calcification.
Type 3 is rarely discussed. Most comparisons of RTA are limited to a comparison of types 1, 2, and 4.
Metastatic calcification is deposition of calcium salts in otherwise normal tissue, because of elevated serum levels of calcium, which can occur because of deranged metabolism as well as increased absorption or decreased excretion of calcium and related minerals, as seen in hyperparathyroidism.
In contrast, dystrophic calcification is caused by abnormalities or degeneration of tissues resulting in mineral deposition, though blood levels of calcium remain normal. These differences in pathology also mean that metastatic calcification is often found in many tissues throughout a person or animal, whereas dystrophic calcification is localized.
Metastatic calcification can occur widely throughout the body but principally affects the interstitial tissues of the vasculature, kidneys, lungs, and gastric mucosa. For the latter three, acid secretions or rapid changes in pH levels contribute to the formation of salts.