Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
690 people from the Agano River basin have been certified as patients of Niigata Minamata disease.
Since the Niigata outbreak was the second recorded in Japan and occurred in the Lower Agano River Basin, it is sometimes called or . It is one of the Four Big Pollution Diseases of Japan.
, sometimes referred to as , is a neurological syndrome caused by severe mercury poisoning. Symptoms include ataxia, numbness in the hands and feet, general muscle weakness, loss of peripheral vision, and damage to hearing and speech. In extreme cases, insanity, paralysis, coma, and death follow within weeks of the onset of symptoms. A congenital form of the disease can also affect fetuses in the womb.
Minamata disease was first discovered in Minamata city in Kumamoto prefecture, Japan, in 1956. It was caused by the release of methylmercury in the industrial wastewater from the Chisso Corporation's chemical factory, which continued from 1932 to 1968. This highly toxic chemical bioaccumulated in shellfish and fish in Minamata Bay and the Shiranui Sea, which, when eaten by the local populace, resulted in mercury poisoning. While cat, dog, pig, and human deaths continued for 36 years, the government and company did little to prevent the pollution. The animal effects were severe enough in cats that they came to be named as having "dancing cat fever".
As of March 2001, 2,265 victims had been officially recognised as having Minamata disease (1,784 of whom had died) and over 10,000 had received financial compensation from Chisso. By 2004, Chisso Corporation had paid $86 million in compensation, and in the same year was ordered to clean up its contamination. On March 29, 2010, a settlement was reached to compensate as-yet uncertified victims.
A second outbreak of Minamata disease occurred in Niigata Prefecture in 1965. The original Minamata disease and Niigata Minamata disease are considered two of the four big pollution diseases of Japan.
The 1971 Iraq poison grain disaster was a mass methylmercury poisoning incident that began in late 1971. Grain treated with a methylmercury fungicide and never intended for human consumption was imported into Iraq as seed grain from Mexico and the United States. Due to a number of factors, including foreign-language labelling and late distribution within the growing cycle, this toxic grain was consumed as food by Iraqi residents in rural areas. People suffered from paresthesia (numbness of skin), ataxia (lack of coordination of muscle movements) and vision loss, symptoms similar to those seen when Minamata disease affected Japan. The recorded death toll was 459 people, but figures at least ten times greater have been suggested. The 1971 poisoning was the largest mercury poisoning disaster when it occurred, with cases peaking in January and February 1972 and stopping by the end of March.
Reports after the disaster recommended tighter regulation, better labelling and handling of mercury-treated grain, and wider involvement of the World Health Organization in monitoring and preventing poisoning incidents. Investigation confirmed the particular danger posed to fetuses and young children.
Common symptoms of mercury poisoning include peripheral neuropathy, presenting as paresthesia or itching, burning, pain, or even a sensation that resembles small insects crawling on or under the skin (formication); skin discoloration (pink cheeks, fingertips and toes); swelling; and desquamation (shedding or peeling of skin).
Mercury irreversibly inhibits selenium-dependent enzymes (see below) and may also inactivate "S"-adenosyl-methionine, which is necessary for catecholamine catabolism by catechol-"O"-methyl transferase. Due to the body's inability to degrade catecholamines (e.g. epinephrine), a person suffering from mercury poisoning may experience profuse sweating, tachycardia (persistently faster-than-normal heart beat), increased salivation, and hypertension (high blood pressure).
Affected children may show red cheeks, nose and lips, loss of hair, teeth, and nails, transient rashes, hypotonia (muscle weakness), and increased sensitivity to light. Other symptoms may include kidney dysfunction (e.g. Fanconi syndrome) or neuropsychiatric symptoms such as emotional lability, memory impairment, or insomnia.
Thus, the clinical presentation may resemble pheochromocytoma or Kawasaki disease. Desquamation (skin peeling) can occur with severe mercury poisoning acquired by handling elemental mercury.
The effect of mercury took some time – the latent period between ingestion and the first symptoms (typically paresthesia – numbness in the extremities) was between 16 and 38 days. Paresthesia was the predominant symptom in less serious cases. Worse cases included ataxia (typically loss of balance), blindness or reduced vision, and death resulting from central nervous system failure. Anywhere between 20 and 40 mg of mercury has been suggested as sufficient for paresthesia (between 0.5 and 0.8 mg/kg of body weight). On average, individuals affected consumed 20 kg or so of bread; the 73,000 tonnes provided would have been sufficient for over 3 million cases.
The hospital in Kirkuk received large numbers of patients with symptoms that doctors recognised from the 1960 outbreak. The first case of alkylmercury poisoning was admitted to hospital on 21 December. By 26 December, the hospital had issued a specific warning to the government. By January 1972, the government had started to strongly warn the populace about eating the grain, although dispatches did not mention the large numbers already ill. The Iraqi Army soon ordered disposal of the grain and eventually declared the death penalty for anyone found selling it. Farmers dumped their supplies wherever possible, and it soon got into the water supply (particularly the River Tigris), causing further problems. The government issued a news blackout and released little information about the outbreak.
The World Health Organization assisted the Iraqi government through the supply of drugs, analytical equipment and expertise. Many new treatments were tried, since existing methods for heavy metal poisoning were not particularly effective. Dimercaprol was administered to several patients, but caused rapid deterioration of their condition. It was ruled out as a treatment for this sort of poisoning following the outbreak. Polythiol resins, penicillamine and dimercaprol sulfonate all helped, but are believed to have been largely insignificant in overall recovery and outcomes. Dialysis was tested on a few patients late in the treatment period, but they showed no clinical improvement. The result of all treatments was varied, with some patients' blood mercury level being dramatically reduced, but a negligible effect in others. All patients received periods of treatment interspersed with lay periods; continuous treatment was suggested in future cases. Later treatment was less effective in reducing blood toxicity.
Mercury poisoning is a type of metal poisoning due to mercury exposure. Symptoms depend upon the type, dose, method, and duration of exposure. They may include muscle weakness, poor coordination, numbness in the hands and feet, skin rashes, anxiety, memory problems, trouble speaking, trouble hearing, or trouble seeing. High level exposure to methylmercury is known as Minamata disease. Methylmercury exposure in children may result in acrodynia (pink's disease) in which the skin becomes pink and peels. Long-term complications may include kidney problems and decreased intelligence. The effects of long-term low-dose exposure to methylmercury is unclear.
Forms of mercury exposure include metal, vapor, salt, and organic compound. Most exposure is from eating fish, amalgam based dental fillings, or exposure at work. In fish, those higher up in the food chain generally have higher levels of mercury. Less commonly poisoning may occur as an attempt to end one's life. Human activities that release mercury into the environment include the burning of coal and mining of gold. Tests of the blood, urine, and hair for mercury are available but do not relate well to the amount in the body.
Prevention includes eating a diet low in mercury, removing mercury from medical and other devices, proper disposal of mercury, and not mining further mercury. In those with acute poisoning from inorganic mercury salts, chelation with either dimercaptosuccinic acid (DMSA) or dimercaptopropane sulfonate (DMPS) appears to improve outcomes if given within a few hours of exposure. Chelation for those with long-term exposure is of unclear benefit. In certain communities that survive on fishing, rates of mercury poisoning among children have been as high as 1.7 per 100.
A toxic heavy metal is any relatively dense metal or metalloid that is noted for its potential toxicity, especially in environmental contexts. The term has particular application to cadmium, mercury, lead and arsenic, all of which appear in the World Health Organisation's list of 10 chemicals of major public concern. Other examples include manganese, chromium, cobalt, nickel, copper, zinc, selenium, silver, antimony and thallium.
Heavy metals are found naturally in the earth. They become concentrated as a result of human caused activities and can enter plant, animal, and human tissues via inhalation, diet, and manual handling. Then, they can bind to and interfere with the functioning of vital cellular components. The toxic effects of arsenic, mercury, and lead were known to the ancients, but methodical studies of the toxicity of some heavy metals appear to date from only 1868. In humans, heavy metal poisoning is generally treated by the administration of chelating agents. Some elements otherwise regarded as toxic heavy metals are essential, in small quantities, for human health.
Metal toxicity or metal poisoning is the toxic effect of certain metals in certain forms and doses on life. Some metals are toxic when they form poisonous soluble compounds. Certain metals have no biological role, i.e. are not essential minerals, or are toxic when in a certain form. In the case of lead, any measurable amount may have negative health effects. Often heavy metals are thought as synonymous, but lighter metals may also be toxic in certain circumstances, such as beryllium and lithium. Not all heavy metals are particularly toxic, and some are essential, such as iron. The definition may also include trace elements when in abnormally high doses may be toxic. An option for treatment of metal poisoning may be chelation therapy, which is a technique which involves the administration of chelation agents to remove metals from the body.
Toxic metals sometimes imitate the action of an essential element in the body, interfering with the metabolic process resulting in illness. Many metals, particularly heavy metals are toxic, but some heavy metals are essential, and some, such as bismuth, have a low toxicity. Most often the definition of toxic metals includes at least cadmium, manganese, lead, mercury and the radioactive metals. Metalloids (arsenic, polonium) may be included in the definition. Radioactive metals have both radiological toxicity and chemical toxicity. Metals in an oxidation state abnormal to the body may also become toxic: chromium(III) is an essential trace element, but chromium(VI) is a carcinogen.
Toxicity is a function of solubility. Insoluble compounds as well as the metallic forms often exhibit negligible toxicity. The toxicity of any metal depends on its ligands. In some cases, organometallic forms, such as methylmercury and tetraethyl lead, can be extremely toxic. In other cases, organometallic derivatives are less toxic such as the cobaltocenium cation.
Decontamination for toxic metals is different from organic toxins: because toxic metals are elements, they cannot be destroyed. Toxic metals may be made insoluble or collected, possibly by the aid of chelating agents, or through bioremediation. Alternatively, they can be diluted into a sufficiently large reservoir, such as the sea, because immediate toxicity is a function of concentration rather than amount.
Toxic metals can bioaccumulate in the body and in the food chain. Therefore, a common characteristic of toxic metals is the chronic nature of their toxicity. This is particularly notable with radioactive heavy metals such as radium, which imitates calcium to the point of being incorporated into human bone, although similar health implications are found in lead or mercury poisoning. The exceptions to this are barium and aluminium, which can be removed efficiently by the kidneys.
The symptoms and signs of Bright's disease were first described in 1827 by the English physician Richard Bright, after whom the disease was named. In his "Reports of Medical Cases", he described 25 cases of dropsy (edema) which he attributed to kidney disease. Symptoms and signs included: inflammation of serous membranes, hemorrhages, apoplexy, convulsions, blindness and coma. Many of these cases were found to have albumin in their urine (detected by the spoon and candle-heat coagulation), and showed striking morbid changes of the kidneys at autopsy. The triad of dropsy, albumin in the urine and kidney disease came to be regarded as characteristic of Bright's disease. Subsequent work by Bright and others indicated an association with cardiac hypertrophy, which was attributed by Bright to stimulation of the heart. Subsequent work by Mahomed showed that a rise in blood pressure could precede the appearance of albumin in the urine, and the rise in blood pressure and increased resistance to flow was believed to explain the cardiac hypertrophy.
It is now known that Bright's disease is due to a wide range of diverse kidney diseases; thus, the term "Bright's disease" is retained strictly for historical application. The disease was diagnosed frequently in patients with diabetes; at least some of these cases would probably correspond to a modern diagnosis of diabetic nephropathy.
Argyria or argyrosis is a condition caused by inappropriate exposure to chemical compounds of the element silver, or to silver dust. The most dramatic symptom of argyria is that the skin turns blue or bluish-grey. It may take the form of "generalized argyria" or "local argyria". Generalized argyria affects large areas over much of the visible surface of the body. Local argyria shows in limited regions of the body, such as patches of skin, parts of the mucous membrane or the conjunctiva.
Bright's disease is a historical classification of kidney diseases that would be described in modern medicine as acute or chronic nephritis. It was characterized by swelling, the presence of albumin in the urine and was frequently accompanied by high blood pressure and heart disease.
The second outbreak of Minamata disease in Niigata Prefecture was discovered in a very similar way to the original outbreak in Kumamoto Prefecture. From the autumn of 1964 to the spring of 1965, cats living along the banks of the Agano River had been seen to go mad and die: "...one cat ran into a small clay cooking stove containing burning charcoal. With the pupils of its eyes dilated, salivating, convulsing and uttering a strange cry, the cat breathed its last breath." These strange symptoms eventually began to appear in people, too. Professor Tadao Tsubaki of Niigata University examined two patients in April and May 1965 and suspected Minamata disease. One patient's hair was found to have a mercury level of 390 ppm. On 31 May, he reported an outbreak of organic mercury poisoning in the Agano River basin to the prefectural government and made his findings public on 12 June.
Heavy metals "can bind to vital cellular components, such as structural proteins, enzymes, and nucleic acids, and interfere with their functioning". Symptoms and effects can vary according to the metal or metal compound, and the dose involved. Broadly, long-term exposure to toxic heavy metals can have carcinogenic, central and peripheral nervous system and circulatory effects. For humans, typical presentations associated with exposure to any of the "classical" toxic heavy metals, or chromium (another toxic heavy metal) or arsenic (a metalloid), are shown in the table.
]
Disease mongering is a term for the practice of widening the diagnostic boundaries of illnesses and aggressively promoting their public awareness in order to expand the markets for treatment.
Among the entities benefiting from selling and delivering treatments are pharmaceutical companies, physicians, alternative practitioners and other professional or consumer organizations. It is distinct from the promulgation of bogus or unrecognised diagnoses.
Common clinical signs of Tyzzer’s Disease include watery diarrhea, depression, emaciation, and a ruffled coat. Other observed clinical signs include melena, depression, lethargy, and decreased temperature. In muskrats, this disease is characterized by extensive hemorrhaging within the lower intestine and abdomen. Due to the fast-acting nature of this disease, infected individuals often do not live long enough to exhibit symptoms. It is not uncommon for an infected animal to die within 1-10 days of disease contraction.
During necropsy, inflammation of the ileum, cecum, and colon are commonly present. Perhaps the most distinctive trait of this disease, however, is the grayish yellow necrotic lesions found on the liver of diseased animals. The number of these spots present can range from one to countless. Occasionally, lesions are discovered in the lower intestinal tract and heart as well. Even with physical signs and symptoms present, a conclusive diagnosis is dependent upon the presence of "C. piliforme" within the liver of the infected animal.
Fields' disease is considered to be one of the rarest known diseases in the world, with only two diagnosed cases in history. The frequency of this disease is therefore 1 in approximately 3.75 billion (although since the disease manifested in identical twins, the actual frequency is 1 in approximately 7.5 billion). It is named after Welsh twins Catherine and Kirstie Fields, of Llanelli. Fields' disease is a neuromuscular disease, causing muscular degeneration.
The disease was first noticed when the twins were around the age of four. Doctors have been unable to identify it and have not been able to match it to any known diseases. As a result, the Fields sisters have undergone numerous tests, but no treatment has yet been found. No definitive cause has been determined and doctors have generally concluded that they were born with it.
Pacheco's disease is an acute and often lethal infectious disease in psittacine birds. The disease is caused by a group of herpesviruses, "Psittacid herpesvirus 1" (PsHV-1), which consists of four genotypes. Birds which do not succumb to Pacheco's disease after infection with the virus become asymptomatic carriers that act as reservoirs of the infection. These persistently infected birds, often Macaws, Amazon parrots and some species of conures, shed the virus in feces and in respiratory and oral secretions. Outbreaks can occur when stress causes healthy birds who carry the virus to shed it. Birds generally become infected after ingesting the virus in contaminated material, and show signs of the disease within several weeks.
The main sign of Pacheco's disease is sudden death, sometimes preceded by a short, severe illness. If a bird survives Pacheco's disease following infection with PsHV-1 genotypes 1, 2 or 3, it may later develop internal papilloma disease in the gastrointestinal tract.
Susceptible parrot species include the African gray parrot, and cockatoo. Native Australian birds, such as the eclectus parrot, Bourke's parrot, and budgerigar are susceptible to Pacheco's disease, although the disease itself has not been found in Australia.
The disease appears to be progressive in nature. The Fields twins started having problems when they were four years old. By the time they had reached the age of nine, they were having difficulty walking and needed frames to assist them with walking. Their muscles have been gradually deteriorating over time. The disease affects the twins' nerves, causing them to make involuntary muscle movements such as trembling in the hands.
The extent of the disease is still unknown as the two women are only 21. However, the disease has had no apparent effect on their brains or personalities. Doctors do not know if the disease is fatal and, if so, what the life expectancy of one with this disease is. If the cause of the disease is genetic, there is a chance that the twins could pass it on to their future children.
White band disease (Acroporid white syndrome) is a coral disease that affects acroporid corals and is distinguishable by the white band of dead coral tissue that it forms. The disease completely destroys the coral tissue of Caribbean acroporid corals, specifically elkhorn coral ("Acropora palmata") and staghorn coral ("A. cervicornis"). The disease exhibits a pronounced division between the remaining coral tissue and the exposed coral skeleton. These symptoms are similar to white plague, except that white band disease is only found on acroporid corals, and white plague has not been found on any acroporid corals. It is part of a class of similar disease known as "white syndromes", many of which may be linked to species of "Vibrio" bacteria. While the pathogen for this disease has not been identified, "Vibrio carchariae" may be one of its factors. The degradation of coral tissue usually begins at the base of the coral, working its way up to the branch tips, but it can begin in the middle of a branch.
Tyzzer’s disease is an acute epizootic bacterial disease found in rodents, rabbits, dogs, cats, birds, pandas, deer, foals, cattle, and other mammals including gerbils. It is caused by the spore-forming bacterium "Clostridium piliforme", formerly known as "Bacillus piliformis". It is an infectious disease characterized by necrotic lesions on the liver, is usually fatal, and is present worldwide. Animals with the disease become infected through oral ingestion of the bacterial spores and usually die within a matter of days. Animals most commonly affected include young, stressed animals in laboratory environments, such as immature rodents and rabbits. Most commonly affected wild animals include muskrats "(Ondatra zibethicus)" and occasionally cottontail rabbits "(Lepus sylvaticus)". Even today, much remains unknown about Tyzzer’s disease, including how and why it occurs.
The term “monger” has ancient roots, providing the basis for many common compound forms such as cheesemonger, fishmonger, and fleshmonger for those who peddle such wares respectively. “Disease mongering” as a label for the "invention" or promotion of diseases in order to capitalize on their treatment was first used in 1992 by health writer Lynn Payer, who applied it to the Listerine mouthwash campaign against halitosis (bad breath).
Payer defined disease mongering as a set of practices which include the following:
- Stating that normal human experiences are abnormal and in need of treatment
- Claiming to recognize suffering which is not present
- Defining a disease such that a large number of people have it
- Defining a disease's cause as some ambiguous deficiency or hormonal imbalance
- Associating a disease with a public relations spin campaign
- Directing the framing of public discussion of a disease
- Intentionally misusing statistics to exaggerate treatment benefits
- Setting a dubious clinical endpoint in research
- Advertising a treatment as without side effect
- Advertising a common symptom as a serious disease
The incidence of conditions not previously defined as illness being medicalised as "diseases" is difficult to scientifically assess due to the inherent social and political nature of the definition of what constitutes a disease, and what aspects of the human condition should be managed according to a medical model. For example, halitosis, the condition which prompted Payer to coin the phrase "disease mongering", isn't merely an imagined social stigma but can stem from any of a wide spectrum of conditions spanning from bacterial infection of the gums to kidney failure, and is recognized by the Scientific Council of the American Dental Association as "a recognizable condition which deserves professional attention".
Pogosta disease is a viral disease, established to be identical with other diseases, Karelian fever and Ockelbo disease. The names are derived from the words Pogosta, Karelia and Ockelbo, respectively.
The symptoms of the disease include usually rash, as well as mild fever and other flu-like symptoms; in most cases the symptoms last less than 5 days. However, in some cases, the patients develop a painful arthritis. There are no known chemical agents available to treat the disease.
It has long been suspected that the disease is caused by a Sindbis-like virus, a positive-stranded RNA virus belonging to the Alphavirus genus and family Togaviridae. In 2002 a strain of Sindbis was isolated from patients during an outbreak of the Pogosta disease in Finland, confirming the hypothesis.
This disease is mainly found in the Eastern parts of Finland; a typical Pogosta disease patient is a middle-aged person who has been infected through a mosquito bite while picking berries in the autumn. The prevalence of the disease is about 100 diagnosed cases every year, with larger outbreaks occurring in 7-year intervals.
After an incubation period of up to seven days, the signs associated with swine vesicular disease occur. The first sign is a transient mild fever. Other signs include:
- Vesicles in the mouth and on the snout and feet
- Lameness and an unsteady gait, shivering and jerking–type leg movements
- Ruptured vesicles can cause ulcers on limbs and feet, and foot pads may be loosened.
Young animals are more severely affected. Recovery often occurs within a week. There is no mortality.
Swine vesicular disease has the same clinical signs as foot-and-mouth disease, and can only be diagnosed by laboratory testing.
Swine vesicular disease (SVD) is an acute, contagious viral disease of swine caused by the swine vesicular disease virus, an enterovirus. It is characterized by fever and vesicles with subsequent ulcers in the mouth and on the snout, feet, and teats. The pathogen is relatively resistant to heat, and can persist for a long time in salted, dried, and smoked meat products. Swine vesicular disease does not cause economically-important disease, but is important due to its similarity to foot-and-mouth disease.
The symptoms of Cherry X disease vary greatly depending on the host. On cherry hosts symptoms can usually first be seen on the fruits, causing them to be smaller in size with a leathery skin. Pale fruit is common at harvest time. It is common for symptoms to first be seen in a single branch. The branch may lose its older leaves, and the leaves tend to be smaller with a bronzed complexion.
The rootstock that the cherry is grafted onto can play a significant role in the disease symptoms seen. Rootstocks of Mahaleb cherry exhibit different symptoms from stocks of Colt, Mazzard, or Stockton Morello. When the scion is grafted onto Mahaleb, symptoms consistent with Phytophthora root rot can be seen. To distinguish between root rot and x-disease the wood under the bark at the graft union should be examined. If it is x-disease the wood at the union will have grooves and pits this causes a browning of the phloem and shows the cells in decline. This rapid decline is caused by the rootstock cells near the graft union dying in large quantities. Foliage begins to turn yellow and the curl upward and inward toward the leaf midrib. Trees infected with Mahaleb rootstock die by late summer or early the following year.
When Cherries are grafted onto Colt, Mazzard, or Stockton Morello rootstocks, there is a different range of symptoms. Affected leaves are smaller than normal and the foliage may be sparse. Dieback of shoot tips is common as the disease progresses. Fruit on branches are smaller, lighter, pointed, low sugar content, poor flavor, and a bitter taste.
Peaches are the next most common economic fruit host of the X-disease. Symptoms can be seen after about two months single branches will begin to show symptoms of their individual leaves. These leaves curl up and inward with irregular yellow to reddish-purple spots. These spots can drop out leaving “shotholes”. Leaves that are affected by the disease will fall prematurely. After 2–3 years the entire tree will show symptoms.