Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The classic symptoms of pellagra are diarrhea, dermatitis, dementia, and death ("the four Ds").
A more comprehensive list of symptoms includes:
- High sensitivity to sunlight
- Aggression
- Dermatitis, alopecia (hair loss), edema (swelling)
- Smooth, beefy red glossitis (tongue inflammation)
- Red skin lesions
- Insomnia
- Weakness
- Mental confusion
- Ataxia (lack of coordination), paralysis of extremities, peripheral neuritis (nerve damage)
- Diarrhea
- Dilated cardiomyopathy (enlarged, weakened heart)
- Eventually dementia
J. Frostig and Tom Spies (acc. to Cleary and Cleary) described more specific psychological symptoms of pellagra as:
- Psychosensory disturbances (impressions as being painful, annoying bright lights, odors intolerance causing nausea and vomiting, dizziness after sudden movements)
- Psychomotor disturbances (restlessness, tense and a desire to quarrel, increased preparedness for motor action)
- Emotional disturbances
Despite clinical symptoms, blood level of tryptophan or urinary metabolites such as 2-pyridone/N-methylniacinamide ratio <2 or NAD/NADP ratio in red blood cells could be used to diagnose pellagra. Diagnosis could be confirmed after rapid improvements in the symptoms in patients using high doses of niacin (250–500 mg/day) or niacin enriched food.
Pellagra is a disease caused by a lack of the vitamin niacin (vitamin B). Symptoms include inflamed skin, diarrhea, dementia, and sores in the mouth. Areas of the skin exposed to either sunlight or friction are typically affected first. Over time affected skin may become darker, stiff, begin to peel, or bleed.
There are two main types of pellagra, primary and secondary. Primary pellagra is due to a diet that does not contain enough niacin and tryptophan. Secondary pellagra is due to a poor ability to use the niacin within the diet. This can occur as a result of alcoholism, long term diarrhea, carcinoid syndrome, Hartnup disease, and a number of medications such as isoniazid. Diagnosis is typically based on symptoms and may be assisted by urine testing.
Treatment is with either niacin or nicotinamide supplementation. Improvements typically begin within a couple of days. General improvements in diet are also frequently recommended. Decreasing sun exposure via sunscreen and proper clothing is important while the skin heals. Without treatment death may occur. It occurs most commonly in the developing world, specifically sub-Saharan Africa.
Micronutrient deficiencies affect more than two billion people of all ages in both developing and industrialized countries. They are the cause of some diseases, exacerbate others and are recognized as having an important impact on worldwide health. Important micronutrients include iodine, iron, zinc, calcium, selenium, fluorine, and vitamins A, B, B, B, B, B, and C.
Micronutrient deficiencies are associated with 10% of all children's deaths, and are therefore of special concern to those involved with child welfare. Deficiencies of essential vitamins or minerals such as Vitamin A, iron, and zinc may be caused by long-term shortages of nutritious food or by infections such as intestinal worms. They may also be caused or exacerbated when illnesses (such as diarrhoea or malaria) cause rapid loss of nutrients through feces or vomit.
Micronutrient deficiency or dietary deficiency is a lack of one or more of the micronutrients required for plant or animal health. In humans and other animals they include both vitamin deficiencies and mineral deficiencies, whereas in plants the term refers to deficiencies of essential trace minerals.
Severe zinc deficiency may disturb the sense of smell and taste. Night blindness may be a feature of severe zinc deficiency, however most reports of night blindness and abnormal dark adaptation in humans with zinc deficiency have occurred in combination with other nutritional deficiencies (e.g. vitamin A).
Zinc deficiency can manifest as non-specific oral ulceration, stomatitis, or white tongue coating. Rarely it can cause angular cheilitis (sores at the corners of the mouth) and burning mouth syndrome.
Zeism is any condition attributed to excessive use of maize (corn) in the diet, such as pellagra, because maize is low in zinc, niacin and tryptophan, and the limited niacin found in maize is not assimilated in the intestinal tract unless it has been treated with alkalis, as in the preparation of tortillas. A type of pellagra attributed to amino acid imbalance is common in India among people who eat a millet with a high leucine content. The deficiencies are usually seasonal.
The (now confirmed) "zeist hypotheses" that pellagra might be a deficiency disease related to corn consumption has been stated in 1810 by the Italian Giovanni Battista Marzari.
Vitamin B deficiency can lead to anemia and neurologic dysfunction. A mild deficiency may not cause any discernible symptoms, but as the deficiency becomes more significant, symptoms of anemia may result, such as weakness, fatigue, light-headedness, rapid heartbeat, rapid breathing and pale color to the skin. It may also cause easy bruising or bleeding, including bleeding gums. GI side effects including sore tongue, stomach upset, weight loss, and diarrhea or constipation. If the deficiency is not corrected, nerve cell damage can result. If this happens, vitamin B deficiency may result in tingling or numbness to the fingers and toes, difficulty walking, mood changes, depression, memory loss, disorientation and, in severe cases, dementia.
The main syndrome of vitamin B deficiency is pernicious anemia. It is characterized by a triad of symptoms:
1. Anemia with bone marrow promegaloblastosis (megaloblastic anemia). This is due to the inhibition of DNA synthesis (specifically purines and thymidine)
2. Gastrointestinal symptoms: alteration in bowel motility, such as mild diarrhea or constipation, and loss of bladder or bowel control. These are thought to be due to defective DNA synthesis inhibiting replication in a site with a high turnover of cells. This may also be due to the autoimmune attack on the parietal cells of the stomach in pernicious anemia. There is an association with GAVE syndrome (commonly called watermelon stomach) and pernicious anemia.
3. Neurological symptoms: Sensory or motor deficiencies (absent reflexes, diminished vibration or soft touch sensation), subacute combined degeneration of spinal cord, seizures, or even symptoms of dementia and or other psychiatric symptoms may be present. Deficiency symptoms in children include developmental delay, regression, irritability, involuntary movements and hypotonia.
The presence of peripheral sensory-motor symptoms or subacute combined degeneration of spinal cord strongly suggests the presence of a B deficiency instead of folate deficiency. Methylmalonic acid, if not properly handled by B, remains in the myelin sheath, causing fragility. Dementia and depression have been associated with this deficiency as well, possibly from the under-production of methionine because of the inability to convert homocysteine into this product. Methionine is a necessary cofactor in the production of several neurotransmitters.
Each of those symptoms can occur either alone or along with others. The neurological complex, defined as "myelosis funicularis", consists of the following symptoms:
1. Impaired perception of deep touch, pressure and vibration, loss of sense of touch, very annoying and persistent paresthesias
2. Ataxia of dorsal chord type
3. Decrease or loss of deep muscle-tendon reflexes
4. Pathological reflexes — Babinski, Rossolimo and others, also severe paresis
Vitamin B deficiency can cause severe and irreversible damage, especially to the brain and nervous system. These symptoms of neuronal damage may not reverse after correction of hematological abnormalities, and the chance of complete reversal decreases with the length of time the neurological symptoms have been present.
Tinnitus may be associated with vitamin B deficiency.
Vitamin B deficiency can also cause symptoms of mania and psychosis, fatigue, memory impairment, irritability, depression, ataxia, and personality changes. In infants symptoms include irritability, failure to thrive, apathy, anorexia, and developmental regression.
In other animals, riboflavin deficiency results in lack of growth, failure to thrive, and eventual death. Experimental riboflavin deficiency in dogs results in growth failure, weakness, ataxia, and inability to stand. The animals collapse, become comatose, and die. During the deficiency state, dermatitis develops together with hair loss. Other signs include corneal opacity, lenticular cataracts, hemorrhagic adrenals, fatty degeneration of the kidney and liver, and inflammation of the mucous membrane of the gastrointestinal tract. Post-mortem studies in rhesus monkeys fed a riboflavin-deficient diet revealed about one-third the normal amount of riboflavin was present in the liver, which is the main storage organ for riboflavin in mammals. Riboflavin deficiency in birds results in low egg hatch rates.
Loss of appetite and weight loss can occur. Additional signs are weakness, sore tongue, headaches, heart palpitations, irritability, and behavioral disorders. In adults, anemia (macrocytic, megaloblastic anemia) can be a sign of advanced folate deficiency.
Women with folate deficiency who become pregnant are more likely to give birth to low birth weight premature infants, and infants with neural tube defects. In infants and children, folate deficiency can lead to failure to thrive or slow growth rate, diarrhea, oral ulcers, megaloblastic anemia, neurological deterioration. Microcephaly, irritability, developmental delay, seizures, blindness and cerebellar ataxia can also be observed.
Mineral deficiency is a lack of dietary minerals, the micronutrients that are needed for an organism's proper health. The cause may be a poor diet, impaired uptake of the minerals that are consumed or a dysfunction in the organism's use of the mineral after it is absorbed. These deficiencies can result in many disorders including anemia and goitre. Examples of mineral deficiency include, zinc deficiency, iron deficiency, and magnesium deficiency.
The symptoms of chromium deficiency caused by long-term total parenteral nutrition are severely impaired glucose tolerance, weight loss, and confusion. However, subsequent studies questioned the validity of these findings.
Overt clinical signs are rarely seen among inhabitants of the developed countries. The assessment of Riboflavin status is essential for confirming cases with unspecific symptoms where deficiency is suspected.
- Glutathione reductase is a nicotinamide adenine dinucleotide phosphate (NADPH) and FAD-dependent enzyme, and the major flavoprotein in erythrocyte. The measurement of the activity coefficient of erythrocyte glutathione reductase (EGR) is the preferred method for assessing riboflavin status. It provides a measure of tissue saturation and long-term riboflavin status. In vitro enzyme activity in terms of activity coefficients (AC) is determined both with and without the addition of FAD to the medium. ACs represent a ratio of the enzyme’s activity with FAD to the enzyme’s activity without FAD. An AC of 1.2 to 1.4, riboflavin status is considered low when FAD is added to stimulate enzyme activity. An AC > 1.4 suggests riboflavin deficiency. On the other hand, if FAD is added and AC is < 1.2, then riboflavin status is considered acceptable. Tillotson and Bashor reported that a decrease in the intakes of riboflavin was associated with increase in EGR AC. In the UK study of Norwich elderly, initial EGR AC values for both males and females were significantly correlated with those measured 2 years later, suggesting that EGR AC may be a reliable measure of long-term biochemical riboflavin status of individuals. These findings are consistent with earlier studies.
- Experimental balance studies indicate that urinary riboflavin excretion rates increase slowly with increasing intakes, until intake level approach 1.0 mg/d, when tissue saturation occurs. At higher intakes, the rate of excretion increases dramatically. Once intakes of 2.5 mg/d are reached, excretion becomes approximately equal to the rate of absorption (Horwitt et al., 1950) (18). At such high intake a significant proportion of the riboflavin intake is not absorbed. If urinary riboflavin excretion is <19 µg/g creatinine (without recent riboflavin intake) or < 40 µg per day are indicative of deficiency.
Vitamin B refers to a group of chemically similar compounds which can be interconverted in biological systems. Vitamin B is part of the vitamin B group of essential nutrients. Its active form, pyridoxal 5′-phosphate, serves as a coenzyme in some 100 enzyme reactions in amino acid, glucose, and lipid metabolism.
The assessment of vitamin B status is essential, as the clinical signs and symptoms in less severe cases are not specific. The three biochemical tests most widely used are the activation coefficient for the erythrocyte enzyme aspartate aminotransferase, plasma PLP concentrations, and the urinary excretion of vitamin B degradation products, specifically urinary PA. Of these, plasma PLP is probably the best single measure, because it reflects tissue stores. Plasma PLP less than 10 nmol/l is indicative of vitamin B deficiency. A PLP concentration greater than 20 nmol/l has been chosen as a level of adequacy for establishing Estimated Average Requirements and Recommended Daily Allowances in the USA. Urinary PA is also an indicator of vitamin B deficiency; levels of less than 3.0 mmol/day is suggestive of vitamin B deficiency.
The classic syndrome for vitamin B deficiency is rare, even in developing countries. A handful of cases were seen between 1952 and 1953, particularly in the United States, and occurred in a small percentage of infants who were fed a formula lacking in pyridoxine.
Folate deficiency is a low level of folic acid and derivatives in the body. Also known as vitamin B9, folate is involved in adenosine, guanine, and thymidine synthesis (part of DNA synthesis). Signs of folate deficiency are often subtle. Anemia is a late finding in folate deficiency and folate deficiency anemia is the term given for this medical condition. It is characterized by the appearance of large-sized, abnormal red blood cells (megaloblasts), which form when there are inadequate stores of folic acid within the body.
Chromium deficiency is a proposed disorder that results from an insufficient dietary intake of chromium. Chromium was first proposed as an essential element for normal glucose metabolism in 1959, and was widely accepted as being such by the 1990s. Cases of deficiency have been claimed in hospital patients who were fed defined liquid diets intravenously for long periods of time.
By the turn of the century, these views were being challenged, with subsequent work suggesting that chromium supplements may present a health risk. In spite of this, dietary supplements containing chromium remain widely available.
Iodine deficiency is one of the leading causes of preventable mental handicaps worldwide, producing typical reductions in IQ of 10 to 15 IQ points. It has been speculated that deficiency of iodine and other micronutrients may be a possible factor in observed differences in IQ between ethnic groups: see race and intelligence for a further discussion of this controversial issue.
Cretinism is a condition associated with iodine deficiency and goiter, commonly characterised by mental deficiency, deafness, squint, disorders of stance and gait and stunted growth due to hypothyroidism. Paracelsus was the first to point out the relation between goitrous parents and their mentally disabled children.
As a result of restricted diet, isolation, intermarriage, etc., as well as low iodine content in their food, children often had peculiar stunted bodies and retarded mental faculties, a condition later known to be associated with thyroid hormone deficiency. Diderot, in his 1754 "Encyclopédie", described these patients as "crétins". In French, the term "crétin des Alpes" also became current, since the condition was observed in remote valleys of the Alps in particular. The word "cretin" appeared in English in 1779.
While reporting recent progress towards overcoming iodine-deficiency disorders worldwide, "The Lancet" noted: "According to World Health Organization, in 2007, nearly 2 billion individuals had insufficient iodine intake, a third being of school age." A conclusion was made that the single most preventable cause of intellectual disability is that of iodine deficiency.
Iodine deficiency is a lack of the trace element iodine, an essential nutrient in the diet. It may result in a goiter, sometimes as an endemic goiter as well as cretinism due to untreated congenital hypothyroidism, which results in developmental delays and other health problems. Iodine deficiency is an important public health issue as it is a preventable cause of intellectual disability.
Iodine is an essential dietary mineral; the thyroid hormones thyroxine and triiodothyronine contain iodine. In areas where there is little iodine in the diet, typically remote inland
areas where no marine foods are eaten, iodine deficiency is common. It is also common in mountainous regions of the world where food is grown in iodine-poor soil.
Prevention includes adding small amounts of iodine to table salt, a product known as "iodized salt". Iodine compounds have also been added to other foodstuffs, such as flour, water and milk, in areas of deficiency. Seafood is also a well known source of iodine.
Iodine deficiency resulting in goiter occurs in 187 million people globally as of 2010 (2.7% of the population). It resulted in 2700 deaths in 2013 up from 2100 deaths in 1990.
Symptoms of iron deficiency can occur even before the condition has progressed to iron deficiency anemia.
Symptoms of iron deficiency are not unique to iron deficiency (i.e. not pathognomonic). Iron is needed for many enzymes to function normally, so a wide range of symptoms may eventually emerge, either as the secondary result of the anemia, or as other primary results of iron deficiency. Symptoms of iron deficiency include:
- fatigue
- dizziness/lightheadedness
- pallor
- hair loss
- twitches
- irritability
- weakness
- pica
- brittle or grooved nails
- hair thinning
- Plummer–Vinson syndrome: painful atrophy of the mucous membrane covering the tongue, the pharynx and the esophagus
- impaired immune function
- pagophagia
- restless legs syndrome
Continued iron deficiency may progress to anaemia and worsening fatigue. Thrombocytosis, or an elevated platelet count, can also result. A lack of sufficient iron levels in the blood is a reason that some people cannot donate blood.
Iron deficiency happens when a body has not enough (or not qualitatively enough) iron to supply its eventual needs. Iron is present in all cells in the human body and has several vital functions, such as: carrying oxygen to the tissues from the lungs as a key component of the hemoglobin protein; acting as a transport medium for electrons within the cells in the form of cytochromes; facilitating oxygen enzyme reactions in various tissues. Too little iron can interfere with these vital functions and lead to morbidity and death.
Total body iron averages approximately 3.8 g in men and 2.3 g in women. In blood plasma, iron is carried tightly bound to the protein transferrin. There are several mechanisms that control human iron metabolism and safeguard against iron deficiency. The main regulatory mechanism is situated in the gastrointestinal tract. When loss of iron is not sufficiently compensated by adequate intake of iron from the diet, a state of iron deficiency develops over time. When this state is uncorrected, it leads to iron deficiency anemia. Before anemia occurs, the medical condition of iron deficiency without anemia is called latent iron deficiency (LID) or Iron-deficient erythropoiesis (IDE).
Untreated iron deficiency can lead to iron deficiency anemia, a common type of anemia. Anemia is a condition characterized by inadequate red blood cells (erythrocytes) or hemoglobin. Iron deficiency anemia occurs when the body lacks sufficient amounts of iron, resulting in reduced production of the protein hemoglobin. Hemoglobin binds to oxygen, thus enabling red blood cells to supply oxygenated blood throughout the body. Children, pre-menopausal women (women of child-bearing age) and people with poor diet are most susceptible to the disease. Most cases of iron deficiency anemia are mild, but if not treated can cause problems like fast or irregular heartbeat, complications during pregnancy, and delayed growth in infants and children.
A vitamin deficiency can cause a disease or syndrome known as an avitaminosis or hypovitaminosis. This usually refers to a long-term deficiency of a vitamin. When caused by inadequate nutrition it can be classed as a "primary deficiency", and when due to an underlying disorder such as malabsorption it can be classed as a "secondary deficiency". An underlying disorder may be metabolic as in a defect converting tryptophan to niacin. It can also be the result of lifestyle choices including smoking and alcohol consumption.
Examples are vitamin A deficiency, folate deficiency, scurvy, vitamin D deficiency, vitamin E deficiency, and vitamin K deficiency. In the medical literature, any of these may also be called by names on the pattern of "hypovitaminosis" or "avitaminosis" + "[letter of vitamin]", for example, hypovitaminosis A, hypovitaminosis C, hypovitaminosis D.
Conversely hypervitaminosis is the syndrome of symptoms caused by over-retention of fat-soluble vitamins in the body.
- Vitamin A deficiency can cause keratomalacia.
- Thiamine (vitamin B1) deficiency causes beriberi and Wernicke–Korsakoff syndrome.
- Riboflavin (vitamin B2) deficiency causes ariboflavinosis.
- Niacin (vitamin B3) deficiency causes pellagra.
- Pantothenic acid (vitamin B5) deficiency causes chronic paresthesia.
- Vitamin B6
- Biotin (vitamin B7) deficiency negatively affects fertility and hair/skin growth. Deficiency can be caused by poor diet or genetic factors (such as mutations in the BTD gene, see multiple carboxylase deficiency).
- Folate (vitamin B9) deficiency is associated with numerous health problems. Fortification of certain foods with folate has drastically reduced the incidence of neural tube defects in countries where such fortification takes place. Deficiency can result from poor diet or genetic factors (such as mutations in the MTHFR gene that lead to compromised folate metabolism).
- Vitamin B12 (cobalamin) deficiency can lead to pernicious anemia, megaloblastic anemia, subacute combined degeneration of spinal cord, and methylmalonic acidemia among other conditions.
- Vitamin C (ascorbic acid) short-term deficiency can lead to weakness, weight loss and general aches and pains. Longer-term depletion may affect the connective tissue. Persistent vitamin C deficiency leads to scurvy.
- Vitamin D (cholecalciferol) deficiency is a known cause of rickets, and has been linked to numerous health problems.
- Vitamin E deficiency causes nerve problems due to poor conduction of electrical impulses along nerves due to changes in nerve membrane structure and function.
- Vitamin K (phylloquinone or menaquinone) deficiency causes impaired coagulation and has also been implicated in osteoporosis
Unless specifically mentioned otherwise, the term malnutrition refers to undernutrition for the remainder of this article. Malnutrition can be divided into two different types, SAM and MAM. SAM refers to children with severe acute malnutrition. MAM refers to moderate acute malnutrition.
Malnutrition is a condition that results from eating a diet in which nutrients are either not enough or are too much such that the diet causes health problems. It may involve calories, protein, carbohydrates, vitamins or minerals. Not enough nutrients is called undernutrition or undernourishment while too much is called overnutrition. Malnutrition is often used to specifically refer to undernutrition where an individual is not getting enough calories, protein, or micronutrients. If undernutrition occurs during pregnancy, or before two years of age, it may result in permanent problems with physical and mental development. Extreme undernourishment, known as starvation, may have symptoms that include: a short height, thin body, very poor energy levels, and swollen legs and abdomen. People also often get infections and are frequently cold. The symptoms of micronutrient deficiencies depend on the micronutrient that is lacking.
Undernourishment is most often due to not enough high-quality food being available to eat. This is often related to high food prices and poverty. A lack of breastfeeding may contribute, as may a number of infectious diseases such as: gastroenteritis, pneumonia, malaria, and measles, which increase nutrient requirements. There are two main types of undernutrition: protein-energy malnutrition and dietary deficiencies. Protein-energy malnutrition has two severe forms: marasmus (a lack of protein and calories) and kwashiorkor (a lack of just protein). Common micronutrient deficiencies include: a lack of iron, iodine, and vitamin A. During pregnancy, due to the body's increased need, deficiencies may become more common. In some developing countries, overnutrition in the form of obesity is beginning to present within the same communities as undernutrition. Other causes of malnutrition include anorexia nervosa and bariatric surgery.
Efforts to improve nutrition are some of the most effective forms of development aid. Breastfeeding can reduce rates of malnutrition and death in children, and efforts to promote the practice increase the rates of breastfeeding. In young children, providing food (in addition to breastmilk) between six months and two years of age improves outcomes. There is also good evidence supporting the supplementation of a number of micronutrients to women during pregnancy and among young children in the developing world. To get food to people who need it most, both delivering food and providing money so people can buy food within local markets are effective. Simply feeding students at school is insufficient. Management of severe malnutrition within the person's home with ready-to-use therapeutic foods is possible much of the time. In those who have severe malnutrition complicated by other health problems, treatment in a hospital setting is recommended. This often involves managing low blood sugar and body temperature, addressing dehydration, and gradual feeding. Routine antibiotics are usually recommended due to the high risk of infection. Longer-term measures include: improving agricultural practices, reducing poverty, improving sanitation, and the empowerment of women.
There were 793 million undernourished people in the world in 2015 (13% of the total population). This is a reduction of 216 million people since 1990 when 23% were undernourished. In 2012 it was estimated that another billion people had a lack of vitamins and minerals. In 2015, protein-energy malnutrition was estimated to have resulted in 323,000 deaths—down from 510,000 deaths in 1990. Other nutritional deficiencies, which include iodine deficiency and iron deficiency anemia, result in another 83,000 deaths. In 2010, malnutrition was the cause of 1.4% of all disability adjusted life years. About a third of deaths in children are believed to be due to undernutrition, although the deaths are rarely labelled as such. In 2010, it was estimated to have contributed to about 1.5 million deaths in women and children, though some estimate the number may be greater than 3 million. An additional 165 million children were estimated to have stunted growth from malnutrition in 2013. Undernutrition is more common in developing countries. Certain groups have higher rates of undernutrition, including women—in particular while pregnant or breastfeeding—children under five years of age, and the elderly. In the elderly, undernutrition becomes more common due to physical, psychological, and social factors.