Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Niemann–Pick type C has a wide clinical spectrum. Affected individuals may have enlargement of the spleen (splenomegaly) and liver (hepatomegaly), or enlarged spleen or liver combined (hepatosplenomegaly), but this finding may be absent in later onset cases. Prolonged jaundice or elevated bilirubin can present at birth. In some cases, however, enlargement of the spleen or liver does not occur for months or years – or not at all. Enlargement of the spleen or liver frequently becomes less apparent with time, in contrast to the progression of other lysosomal storage diseases such as Niemann–Pick disease, Types A and B or Gaucher disease. Organ enlargement does not usually cause major complications.
Progressive neurological disease is the hallmark of Niemann–Pick type C disease, and is responsible for disability and premature death in all cases beyond early childhood. Classically, children with NPC may initially present with delays in reaching normal developmental milestones skills before manifesting cognitive decline (dementia).
Neurological signs and symptoms include cerebellar ataxia (unsteady walking with uncoordinated limb movements), dysarthria (slurred speech), dysphagia (difficulty in swallowing), tremor, epilepsy (both partial and generalized), vertical supranuclear palsy (upgaze palsy, downgaze palsy, saccadic palsy or paralysis), sleep inversion, gelastic cataplexy (sudden loss of muscle tone or drop attacks), dystonia (abnormal movements or postures caused by contraction of agonist and antagonist muscles across joints), most commonly begins with in turning of one foot when walking (action dystonia) and may spread to become generalized, spasticity (velocity dependent increase in muscle tone), hypotonia, ptosis (drooping of the upper eyelid), microcephaly (abnormally small head), psychosis, progressive dementia, progressive hearing loss, bipolar disorder, major and psychotic depression that can include hallucinations, delusions, mutism, or stupor.
In the terminal stages of Niemann–Pick type C disease, the patient is bedridden, with complete ophthalmoplegia, loss of volitional movement and severe dementia.
Symptoms are related to the organs in which sphingomyelin accumulates. Enlargement of the liver and spleen (hepatosplenomegaly) may cause reduced appetite, abdominal distension, and pain. Enlargement of the spleen (splenomegaly) may also cause low levels of platelets in the blood (thrombocytopenia).
Accumulation of sphingomyelin in the central nervous system (including the cerebellum) results in unsteady gait (ataxia), slurring of speech (dysarthria), and difficulty in swallowing (dysphagia). Basal ganglia dysfunction causes abnormal posturing of the limbs, trunk, and face (dystonia). Upper brainstem disease results in impaired voluntary rapid eye movements (supranuclear gaze palsy). More widespread disease involving the cerebral cortex and subcortical structures causes gradual loss of intellectual abilities, causing dementia and seizures.
Bones also may be affected: symptoms may include enlarged bone marrow cavities, thinned cortical bone, or a distortion of the hip bone called coxa vara. Sleep-related disorders, such as sleep inversion, sleepiness during the day and wakefulness at night, may occur. Gelastic cataplexy, the sudden loss of muscle tone when the affected patient laughs, is also seen.
Niemann–Pick type C is a lysosomal storage disease associated with mutations in NPC1 and NPC2 genes. Niemann–Pick type C affects an estimated 1:150,000 people. Approximately 50% of cases present before 10 years of age, but manifestations may first be recognized as late as the sixth decade.
There are four types of Niemann–Pick disease in two categories. Patients with ASM deficiency are classified into type A and B. Type A patients exhibit hepatosplenomegaly in infancy and profound central nervous system involvement and unable to survive beyond two years of age. Type B patients also show hepatosplenomegaly and pathologic alterations of their lungs but usually without the involvement of their central nervous system. Some can develop significant life-threatening complications including liver failure, hemorrhage, oxygen dependency, pulmonary infections, and splenic rupture. Some develop coronary artery or valvular heart disease. In a longitudinal natural history study, nearly 20% of the patients died. For those classified into type C, they may have mild hepatosplenomegaly, but their central nervous system is profoundly affected.
- Niemann–Pick disease, SMPD1-associated, which includes types A and B
- Niemann–Pick disease, type C: subacute/juvenile, includes types C1 (95% of type C) and C2. Type C is the most common form of the disease Type C2 is a rare form of the disease.
The symptoms of LSD vary, depending on the particular disorder and other variables such as the age of onset, and can be mild to severe. They can include developmental delay, movement disorders, seizures, dementia, deafness, and/or blindness. Some people with LSDhave enlarged livers (hepatomegaly) and enlarged spleens (splenomegaly), pulmonary and cardiac problems, and bones that grow abnormally.
Adult polyglucosan body disease is a condition that affects the nervous system. People with this condition have problems walking due to reduced sensation in their legs (peripheral neuropathy) and progressive muscle weakness and stiffness (spasticity). Damage to the nerves that control bladder function, a condition called neurogenic bladder, causes affected individuals to have progressive difficulty controlling the flow of urine. About half of people with adult polyglucosan body disease experience a decline in intellectual function (dementia). Most people with the condition first go to the doctor due to the bladder issues.
People with adult polyglucosan body disease typically first experience signs and symptoms related to the condition between ages 30 and 60.
Adult polyglucosan body disease (APBD) is an orphan disease and a glycogen storage disorder that is caused by an inborn error of metabolism. Symptoms can emerge any time after the age of 30; early symptoms include trouble controlling urination, trouble walking, and lack of sensation in the legs. People eventually develop dementia.
A person inherits loss-of-function mutations in the "GBE1" gene from each parent, and the lack of glycogen branching enzyme (the protein encoded by "GNE1") leads to buildup of unbranched glycogen in cells, which harms neurons more than other kinds of cells.
Most people first go to the doctor due to trouble with urination. The condition is diagnosed by gathering symptoms, a neurological examination, laboratory tests including genetic testing, and medical imaging. As of 2015 there was no cure or treatment, but the symptoms could be managed. People diagnosed with APBD can live a long time after diagnosis, but will probably die earlier than people without the condition.
The majority of patients is initially screened by enzyme assay, which is the most efficient method to arrive at a definitive diagnosis. In some families where the disease-causing mutations are known and in certain genetic isolates, mutation analysis may be performed. In addition, after a diagnosis is made by biochemical means, mutation analysis may be performed for certain disorders.
Individuals with Salla disease may present with nystagmus in the first months of life as well as hypotonia, reduced muscle tone and strength, and cognitive impairment. The most severely impaired children do not walk or acquire language, but the typical patient learns to walk and speak and has normal life expectancy. The MRI shows arrested or delayed myelination.
Symptoms of early infantile GM1 (the most severe subtype, with onset shortly after birth) may include neurodegeneration, seizures, liver enlargement (hepatomegaly), spleen enlargement (splenomegaly), coarsening of facial features, skeletal irregularities, joint stiffness, distended abdomen, muscle weakness, exaggerated startle response to sound, and problems with gait.
About half of affected patients develop cherry-red spots in the eye.
Children may be deaf and blind by age 1 and often die by age 3 from cardiac complications or pneumonia.
- Autosomal recessive disorder; beta-galactosidase deficiency; neuronal storage of GM1 ganglioside and visceral storage of galactosyl oligosaccharides and keratan sulfate.
- Early psychomotor deterioration: decreased activity and lethargy in the first weeks; never sit; feeding problems - failure to thrive; visual failure (nystagmus noted) by 6 months; initial hypotonia; later spasticity with pyramidal signs; secondary microcephaly develops; decerebrate rigidity by 1 year and death by age 1–2 years (due to pneumonia and respiratory failure); some have hyperacusis.
- Macular cherry-red spots in 50% by 6–10 months; corneal opacities in some
- Facial dysmorphology: frontal bossing, wide nasal bridge, facial edema (puffy eyelids); peripheral edema, epicanthus, long upper lip, microretrognathia, gingival hypertrophy (thick alveolar ridges), macroglossia
- Hepatomegaly by 6 months and splenomegaly later; some have cardiac failure
- Skeletal deformities: flexion contractures noted by 3 months; early subperiosteal bone formation (may be present at birth); diaphyseal widening later; demineralization; thoracolumbar vertebral hypoplasia and beaking at age 3–6 months; kyphoscoliosis. *Dysostosis multiplex (as in the mucopolysaccharidoses)
- 10–80% of peripheral lymphocytes are vacuolated; foamy histiocytes in bone marrow; visceral mucopolysaccharide storage similar to that in Hurler disease; GM1 storage in cerebral gray matter is 10-fold elevated (20–50-fold increased in viscera)
- Galactose-containing oligosacchariduria and moderate keratan sulfaturia
- Morquio disease Type B: Mutations with higher residual beta-galactosidase activity for the GM1 substrate than for keratan sulfate and other galactose-containing oligosaccharides have minimal neurologic involvement but severe dysostosis resembling Morquio disease type A (Mucopolysaccharidosis type 4).
Onset of late infantile GM1 is typically between ages 1 and 3 years.
Neurological symptoms include ataxia, seizures, dementia, and difficulties with speech.
A lipid storage disorder (or lipidosis) can be any one of a group of inherited metabolic disorders in which harmful amounts of fats or lipids accumulate in some of the body’s cells and tissues. People with these disorders either do not produce enough of one of the enzymes needed to metabolize and break down lipids or they produce enzymes that do not work properly. Over time, this excessive storage of fats can cause permanent cellular and tissue damage, particularly in the brain, peripheral nervous system, liver, spleen and bone marrow.
Inside cells under normal conditions, lysosomes convert, or metabolize, lipids and proteins into smaller components to provide energy for the body.
Other lipid storage disorders that are generally not classified as sphingolipidoses include fucosidosis, Schindler disease and Wolman disease.
The signs and symptoms in glycogen storage disease type IX include:
- Enlarged liver
- Slowed growth
- Motor development delay (mild)
- Low blood sugar accompanied by ketosis
- Lack of muscle tone
Most of these signs and symptoms diminish as adulthood sets in.
Signs and symptoms include (for each of the following causes):
- Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like syndrome (MELAS)
- Varying degrees of cognitive impairment and dementia
- Lactic acidosis
- Strokes
- Transient ischemic attacks
- Hearing loss
- Weight loss
- Myoclonic epilepsy and ragged-red fibers (MERRF)
- Progressive myoclonic epilepsy
- Clumps of diseased mitochondria accumulate in muscle fibers and appear as "ragged-red fibers" when muscle is stained with modified Gömöri trichrome stain
- Short stature
- Kearns-Sayre syndrome (KSS)
- External ophthalmoplegia
- Cardiac conduction defects
- Sensorineural hearing loss
- Chronic progressive external ophthalmoplegia (CPEO)
- Progressive ophthalmoparesis
- Symptomatic overlap with other mitochondrial myopathies
Like other mitochrondrial diseases, "MNGIE is a multisystem disorder". MNGIE primarily affects the gastrointestinal and neurological systems. Gastrointestinal symptoms may include gastrointestinal dysmotility, due to inefficient peristalsis, which may result in pseudo-obstruction and cause malabsorption of nutrients. Additionally, gastrointestinal symptoms such as borborygmi, early satiety, diarrhea, constipation, gastroparesis, nausea, vomiting, weight loss, and diverticulitis may be present in MNGIE patients. Neurological symptoms may include diffuse leukoencephalopathy, peripheral neuropathy, and myopathy. Ocular symptoms may include retinal degeneration, ophthalmoplegia, and ptosis. Those with MNGIE are often thin and experience continuous weight loss. The characteristic thinness of MNGIE patients is caused by multiple factors including inadequate caloric intake due to gastrointestinal symptoms and discomfort, malabsorption of food from bacterial overgrowth due to decreased motility, as well as an increased metabolic demand due to inefficient production of ATP by the mitochondria.
Salla disease (SD), also called sialic acid storage disease or Finnish type sialuria, is an autosomal recessive lysosomal storage disease characterized by early physical impairment and mental retardation. It was first described in 1979, after Salla, a municipality in Finnish Lapland. Salla disease is one of 40 Finnish heritage diseases and affects approximately 130 individuals, mainly from Finland and Sweden.
Glycogen storage disease type IX is a hereditary deficiency of glycogen phosphorylase kinase B that affects the liver and skeletal muscle tissue. It is inherited in an X-linked or autosomal recessive manner.
Mitochondrial neurogastrointestinal encephalopathy syndrome (MNGIE) is a rare autosomal recessive mitochondrial disease. It has been previously referred to as polyneuropathy, ophthalmoplegia, leukoencephalopathy, and POLIP syndrome. The disease presents in childhood, but often goes unnoticed for decades. Unlike typical mitochondrial diseases caused by mitochondrial DNA (mtDNA) mutations, MNGIE is caused by mutations in the TYMP gene, which encodes the enzyme thymidine phosphorylase. Mutations in this gene result in impaired mitochondrial function, leading to intestinal symptoms as well as neuro-ophthalmologic abnormalities. "A secondary form of MNGIE, called MNGIE without leukoencephalopathy, can be caused by mutations in the POLG gene".
Glycogen storage disease type XI is a form of glycogen storage disease. It is also known as "Fanconi–Bickel syndrome", for Guido Fanconi and Horst Bickel, who first described it in 1949.
It is associated with GLUT2, a glucose transport protein which, when functioning normally, allows glucose to exit several tissues, including the liver, nephrons, and enterocytes of the intestines, and enter the blood. The syndrome results in hepatomegaly secondary to glycogen accumulation, glucose and galactose intolerance, fasting hypoglycaemia, a characteristic proximal tubular nephropathy and severe short stature.
Mitochondrial myopathies are types of myopathies associated with mitochondrial disease. On biopsy, the muscle tissue of patients with these diseases usually demonstrate "ragged red" muscle fibers. These ragged-red fibers contain mild accumulations of glycogen and neutral lipids, and may show an increased reactivity for succinate dehydrogenase and a decreased reactivity for cytochrome c oxidase. Inheritance was believed to be maternal (non-Mendelian extranuclear). It is now known that certain nuclear DNA deletions can also cause mitochondrial myopathy such as the OPA1 gene deletion. There are several subcategories of mitochondrial myopathies.
Symptoms present by eight months of age and are marked by developmental delay followed by neurological complications such as seizures, involuntary eye movements, and ataxia, involuntary muscle movements and failure to gain weight and grow at the expected rate (failure to thrive). Babies with this condition also have and enlarged liver and spleen (hepatosplenomegaly) and enlarged heart (cardiomegaly).
Patients generally have a benign course, and typically present with hepatomegaly and growth retardation early in childhood. Mild hypoglycemia, hyperlipidemia, and hyperketosis may occur. Lactic acid and uric acid levels may be normal. However, lactic acidosis may occur during fasting.
Glycogen storage disease type III presents during infancy with hypoglycemia and failure to thrive. Clinical examination usually reveals hepatomegaly. Muscular disease, including hypotonia and cardiomyopathy, usually occurs later. The liver pathology typically regresses as the individual enter adolescence, as does splenomegaly, should the individual so develop it.
Infantile free sialic acid storage disease (ISSD) is a lysosomal storage disease Occurs when a sialic acid, is unable to be transported out of the lysosomal membrane and instead, accumulates in the tissue and free sialic acid is excreted in the urine. Mutations in the SLC17A5 (solute carrier family 17 (anion/sugar transporter), member 50) gene cause all forms of sialic acid storage disease. The SLC17A5 gene is located on the long (q) arm of chromosome 6 between positions 14 and 15. This gene provides instructions for producing a protein called sialin that is located mainly on the membranes of lysosomes, compartments in the cell that digest and recycle materials.
ISSD is the most severe form of the sialic acid storage diseases. Babies with this condition have severe developmental delay, weak muscle tone (hypotonia), and failure to gain weight and grow at the expected rate (failure to thrive). They may have unusual facial features that are often described as "coarse," seizures, bone malformations, enlarged liver and spleen (hepatosplenomegaly), and an enlarged heart (cardiomegaly).
ISSD is a rare autosomal recessive disorder and affects 1 in 528,000 live births worldwide.