Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The clinical signs of minimal change disease are proteinuria (abnormal excretion of proteins, mainly albumin, into the urine), oedema (swelling of soft tissues as a consequence of water retention), and hypoalbuminaemia (low serum albumin). These signs are referred to collectively as nephrotic syndrome. Minimal change disease is unique among the causes of nephrotic syndrome as it lacks evidence of pathology in light microscopy, hence the name.
When albumin is excreted in the urine, its serum (blood) concentration decreases. Consequently, the intravascular oncotic pressure reduces relative to the interstitial tissue. The subsequent movement of fluid from the vascular compartment to the interstitial compartment manifests as the soft tissue swelling referred to as oedema. This fluid collects most commonly in the feet and legs, in response to gravity, particularly in those with poorly functioning valves. In severe cases, fluid can shift into the peritoneal cavity (abdomen) and cause ascites. As a result of the excess fluid, individuals with minimal change disease often gain weight, as they are excreting less water in the urine, and experience fatigue. Additionally, the protein in the urine causes it to become frothy.
Minimal change disease (also known as MCD and nil disease, among others) is a disease affecting the kidneys which causes a nephrotic syndrome. Nephrotic syndrome leads to the excretion of protein, which causes the widespread oedema (soft tissue swelling) and impaired kidney function commonly experienced by those affected by the disease. It is most common in children and has a peak incidence at 2 to 3 years of age.
Focal segmental glomerulosclerosis (FSGS) is a cause of nephrotic syndrome in children and adolescents, as well as a leading cause of kidney failure in adults. It is also known as "focal glomerular sclerosis" or "focal nodular glomerulosclerosis". It accounts for about a sixth of the cases of nephrotic syndrome. (Minimal change disease (MCD) is by far the most common cause of nephrotic syndrome in children: MCD and primary FSGS may have a similar cause.)
Depending on the cause it is broadly classified as:
- Primary, when no underlying cause is found; usually presents as nephrotic syndrome
- Secondary, when an underlying cause is identified; usually presents with kidney failure and proteinuria. This is actually a heterogeneous group including numerous causes such as
- Toxins and drugs such as heroin and pamidronate
- Familial forms
- Secondary to nephron loss and hyperfiltration, such as with chronic pyelonephritis and reflux, morbid obesity, diabetes mellitus
There are many other classification schemes also.
The onset of symptoms is 5 to 10 years after the disease begins. A usual first symptom is frequent urination at night: nocturia. Other symptoms include tiredness, headaches, a general feeling of illness, nausea, vomiting, frequent daytime urination, lack of appetite, itchy skin, and leg swelling.
Congenital nephrotic syndrome is an inherited disorder characterized by protein in the urine and swelling of the body.
It is a genetic developmental disorder with clinical diversity characterized by hypoparathyroidism, sensorineural deafness and renal disease. Patients usually present with hypocalcaemia, tetany, or afebrile convulsions at any age. Hearing loss is usually bilateral and may range from mild to profound impairment. Renal disease includes nephrotic syndrome, cystic kidney, renal dysplasia, hypoplasia or aplasia, pelvicalyceal deformity, vesicoureteral reflux, chronic kidney disease, hematuria, proteinuria and renal scarring.
An examination reveals massive fluid retention and generalized swelling. Abnormal sounds are heard when listening to the heart and lungs with a stethoscope. Blood pressure may be high. The patient may have signs of malnutrition.
A urinalysis reveals large amounts of protein and the presence of fat in the urine. Total protein in the blood may be low. The disorder can be screened during pregnancy by finding elevated levels of alpha-fetoprotein on a routine sampling of amniotic fluid. Genetic tests should be used to confirm the diagnosis, if the screening test is positive.
CNF is one of the Finnish heritage diseases. By use of positional cloning strategies, Kestila et al. isolated the gene responsible for NPHS1. Mutations in Finnish patients with NPHS1 were found in this gene, which they termed nephrin. The most common Finnish mutation was a deletion of 2 nucleotides in exon 2 (602716.0001), resulting in a frameshift and a truncated protein. The predicted nephrin protein belongs to the immunoglobulin family of cell adhesion molecules and is specifically expressed in renal glomeruli. It was also observed that, in most cases, alleles typically found on CNF chromosomes of Finnish families were also found on CNF chromosomes of non-Finnish families from North America and Europe.
Frequent infections may occur over the course of the disease.
The symptoms of reflux nephropathy are comparable to nephrotic syndrome and infection of the urinary tract, though some individuals may not exhibit any evidence (symptom) of reflux nephropathy.
Most types of RPGN are characterized by severe and rapid loss of kidney function featuring severe hematuria (blood in the urine), red blood cell casts in the urine, and proteinuria (protein in the urine), sometimes exceeding 3 g protein/24 h, a range associated with nephrotic syndrome. Some patients also experience hypertension (high blood pressure) and edema. Severe disease is characterized by pronounced oliguria or anuria, which portends a poor prognosis.
The underlying calyces lose their normal concave shape and show clubbing.
Some symptoms that are present in nephrotic syndrome, such as edema and proteinuria, also appear in other illnesses. Therefore, other pathologies need to be excluded in order to arrive at a definitive diagnosis.
- Edema: in addition to nephrotic syndrome there are two other disorders that often present with edema; these are heart failure and liver failure. Congestive heart failure can cause liquid retention in tissues as a consequence of the decrease in the strength of ventricular contractions. The liquid is initially concentrated in the ankles but it subsequently becomes generalized and is called anasarca. Patients with congestive heart failure also experience an abnormal swelling of the heart cardiomegaly, which aids in making a correct diagnosis. Jugular venous pressure can also be elevated and it might be possible to hear heart murmurs. An echocardiogram is the preferred investigation method for these symptoms. Liver failure caused by cirrhosis, hepatitis and other conditions such as alcoholism, IV drug use or some hereditary diseases can lead to swelling in the lower extremities and the abdominal cavity. Other accompanying symptoms include jaundice, dilated veins over umbilicus (caput medusae), scratch marks (due to widespread itching, known as pruritus), enlarged spleen, spider angiomata, encephalopathy, bruising, nodular liver and anomalies in the liver function tests. Less frequently symptoms associated with the administration of certain pharmaceutical drugs have to be discounted. These drugs promote the retention of liquid in the extremities such as occurs with NSAIs, some antihypertensive drugs, the adrenal corticosteroids and sex hormones.
Acute fluid overload can cause edema in someone with kidney failure. These people are known to have kidney failure, and have either drunk too much or missed their dialysis. In addition, when Metastatic cancer spreads to the lungs or abdomen it causes effusions and fluid accumulation due to obstruction of lymphatic vessels and veins, as well as serous exudation.
- Proteinuria: the loss of proteins from the urine is caused by many pathological agents and infection by these agents has to be ruled out before it can be certain that a patient has nephrotic syndrome. Multiple myeloma can cause a proteinuria that is not accompanied by hypoalbuminemia, which is an important aid in making a differential diagnosis; other potential causes of proteinuria include asthenia, weight loss or bone pain. In diabetes mellitus there is an association between increases in glycated hemoglobin levels and the appearance of proteinuria. Other causes are amyloidosis and certain other allergic and infectious diseases.
Proteinuria is the presence of excess proteins in the urine. In healthy persons, urine contains very little protein; an excess is suggestive of illness. Excess protein in the urine often causes the urine to become foamy, although foamy urine may also be caused by bilirubin in the urine (bilirubinuria), retrograde ejaculation, pneumaturia (air bubbles in the urine) due to a fistula, or drugs such as pyridium.
Diabetic nephropathy (diabetic kidney disease) (DN) is the chronic loss of kidney function occurring in those with diabetes mellitus. It is a serious complication, affecting around one-quarter of adult diabetics in the United States. It usually is slowly progressive over years. Pathophysiologic abnormalities in DN begin with long-standing poorly controlled blood glucose levels. This is followed by multiple changes in the filtration units of the kidneys, the nephrons. (There are normally about 3/4-1 1/2 million nephrons in each adult kidney). Initially, there is constriction of the efferent arterioles and dilation of afferent arterioles, with resulting glomerular capillary hypertension and hyperfiltration; this gradually changes to hypofiltration over time. Concurrently, there are changes within the glomerulus itself: these include a thickening of the basement membrane, a widening of the slit membranes of the podocytes, an increase in the number of mesangial cells, and an increase in mesangial matrix. This matrix invades the glomerular capillaries and produces deposits called Kimmelstiel-Wilson nodules. The mesangial cells and matrix can progressively expand and consume the entire glomerulus, shutting off filtration.
The status of DN may be monitored by measuring two values: the amount of protein in the urine - proteinuria; and a blood test called the serum creatinine. The amount of the proteinuria is a reflection of the degree of damage to any still-functioning glomeruli. The value of the serum creatinine can be used to calculate the estimated glomerular filtration rate (eGFR), which reflects the percentage of glomeruli which are no longer filtering the blood.
Treatment with an angiotensin converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB), which dilates the arteriole exiting the glomerulus, thus reducing the blood pressure within the glomerular capillaries, may delay - but not stop - progression of the disease. Also, three classes of diabetes medications - GLP-1 agonists, DPP-4 inhibitors, and SGLT2 inhibitors - may delay progression.
The proteinuria may become massive, and cause a low serum albumin with resulting generalized body swelling (edema): the nephrotic syndrome. Likewise, the eGFR may progressively fall from a normal of over 90 ml/min/1.73m to less than 15, at which point the patient is said to have end-stage kidney disease (ESKD). Diabetic nephropathy is the most common cause of ESKD, which may require hemodialysis and eventually kidney transplantation to replace the failed kidney function. Diabetic nephropathy is associated with an increased risk of death in general, particularly from cardiovascular disease.
Symptoms can vary from person to person. Someone in early stage kidney disease may not feel sick or notice symptoms as they occur. When kidneys fail to filter properly, waste accumulates in the blood and the body, a condition called azotemia. Very low levels of azotaemia may produce few, if any, symptoms. If the disease progresses, symptoms become noticeable (if the failure is of sufficient degree to cause symptoms). Kidney failure accompanied by noticeable symptoms is termed uraemia.
Symptoms of kidney failure include the following:
- High levels of urea in the blood, which can result in:
- Vomiting or diarrhea (or both) which may lead to dehydration
- Nausea
- Weight loss
- Nocturnal urination
- More frequent urination, or in greater amounts than usual, with pale urine
- Less frequent urination, or in smaller amounts than usual, with dark coloured urine
- Blood in the urine
- Pressure, or difficulty urinating
- Unusual amounts of urination, usually in large quantities
- A buildup of phosphates in the blood that diseased kidneys cannot filter out may cause:
- Itching
- Bone damage
- Nonunion in broken bones
- Muscle cramps (caused by low levels of calcium which can be associated with hyperphosphatemia)
- A buildup of potassium in the blood that diseased kidneys cannot filter out (called hyperkalemia) may cause:
- Abnormal heart rhythms
- Muscle paralysis
- Failure of kidneys to remove excess fluid may cause:
- Swelling of the legs, ankles, feet, face, or hands
- Shortness of breath due to extra fluid on the lungs (may also be caused by anemia)
- Polycystic kidney disease, which causes large, fluid-filled cysts on the kidneys and sometimes the liver, can cause:
- Pain in the back or side
- Healthy kidneys produce the hormone erythropoietin that stimulates the bone marrow to make oxygen-carrying red blood cells. As the kidneys fail, they produce less erythropoietin, resulting in decreased production of red blood cells to replace the natural breakdown of old red blood cells. As a result, the blood carries less hemoglobin, a condition known as anemia. This can result in:
- Feeling tired or weak
- Memory problems
- Difficulty concentrating
- Dizziness
- Low blood pressure
- Normally, proteins are too large to pass through the kidneys, however, they are able to pass through when the glomeruli are damaged. This does not cause symptoms until extensive kidney damage has occurred, after which symptoms include:
- Foamy or bubbly urine
- Swelling in the hands, feet, abdomen, or face
- Other symptoms include:
- Appetite loss, a bad taste in the mouth
- Difficulty sleeping
- Darkening of the skin
- Excess protein in the blood
- With high doses of penicillin, people with kidney failure may experience seizures
There are three main mechanisms to cause proteinuria:
- Due to disease in the glomerulus
- Because of increased quantity of proteins in serum (overflow proteinuria)
- Due to low reabsorption at proximal tubule (Fanconi syndrome)
Proteinuria can also be caused by certain biological agents, such as bevacizumab (Avastin) used in cancer treatment. Excessive fluid intake (drinking in excess of 4 litres of water per day) is another cause.
Also leptin administration to normotensive Sprague Dawley rats during pregnancy significantly increases urinary protein excretion.
Proteinuria may be a sign of renal (kidney) damage. Since serum proteins are readily reabsorbed from urine, the presence of excess protein indicates either an insufficiency of absorption or impaired filtration. People with diabetes may have damaged nephrons and develop proteinuria. The most common cause of proteinuria is diabetes, and in any person with proteinuria and diabetes, the cause of the underlying proteinuria should be separated into two categories: diabetic proteinuria versus the field.
With severe proteinuria, general hypoproteinemia can develop which results in
diminished oncotic pressure. Symptoms of diminished oncotic pressure may include ascites, edema and hydrothorax.
The classic presentation (in 40–50% of the cases) is episodic hematuria, which usually starts within a day or two of a non-specific upper respiratory tract infection (hence "synpharyngitic"), as opposed to post-streptococcal glomerulonephritis, which occurs some time (weeks) after initial infection. Less commonly gastrointestinal or urinary infection can be the inciting agent. All of these infections have in common the activation of mucosal defenses and hence IgA antibody production. Groin pain can also occur. The gross hematuria resolves after a few days, though microscopic hematuria may persist. These episodes occur on an irregular basis every few months and in most patients eventually subsides, although it can take many years. Renal function usually remains normal, though rarely, acute kidney failure may occur (see below). This presentation is more common in younger adults.
A smaller proportion (20-30%), usually the older population, have microscopic hematuria and proteinuria (less than 2 gram/day). These patients may not have any symptoms and are only clinically found if a physician decides to take a urine sample. Hence, the disease is more commonly diagnosed in situations where screening of urine is compulsory (e.g., schoolchildren in Japan).
Very rarely (5% each), the presenting history is:
- Nephrotic syndrome (3-3.5 grams of protein loss in the urine, associated with a poorer prognosis)
- Acute kidney failure (either as a complication of the frank hematuria, when it usually recovers, or due to rapidly progressive glomerulonephritis which often leads to chronic kidney failure)
- Chronic kidney failure (no previous symptoms, presents with anemia, hypertension and other symptoms of kidney failure, in people who probably had longstanding undetected microscopic hematuria and/or proteinuria)
A variety of systemic diseases are associated with IgA nephropathy such as liver failure, celiac disease, rheumatoid arthritis, reactive arthritis, ankylosing spondylitis and HIV. Diagnosis of IgA nephropathy and a search for any associated disease occasionally reveals such an underlying serious systemic disease. Occasionally, there are simultaneous symptoms of Henoch–Schönlein purpura; see below for more details on the association. Some HLA alleles have been suspected along with complement phenotypes as being genetic factors.
Membranoproliferative glomerulonephritis ("MPGN"), also known as mesangiocapillary glomerulonephritis, is a type of glomerulonephritis caused by deposits in the kidney glomerular mesangium and basement membrane (GBM) thickening, activating complement and damaging the glomeruli.
MPGN accounts for approximately 4% of primary renal causes of nephrotic syndrome in children and 7% in adults.
It should not be confused with membranous glomerulonephritis, a condition in which the basement membrane is thickened, but the mesangium is not.
Nephrotic syndrome is a collection of symptoms due to kidney damage. This includes protein in the urine, low blood albumin levels, high blood lipids, and significant swelling. Other symptoms may include weight gain, feeling tired, and foamy urine. Complications may include blood clots, infections, and high blood pressure.
Causes include a number of kidney diseases such as focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. It may also occur as a complication of diabetes or lupus. The underlying mechanism typically involves damage to the glomeruli of the kidney. Diagnosis is typically based on urine testing and sometimes a kidney biopsy. It differs from nephritic syndrome in that there are no red blood cells in the urine.
Treatment is directed at the underlying cause. Other efforts include managing high blood pressure, high blood cholesterol, and infection risk. A low salt diet and limiting fluids is often recommended. About 5 per 100,000 people are affected per year. The usual underlying cause varies between children and adults.
Nearly all individuals show multiple café au lait spots.Features common in neurofibromatosis - Lisch nodules, bone abnormalities, neurofibromas, optic pathway gliomas and malignant peripheral nerve sheath tumors - are absent in this condition Symptoms however, may include:
- Freckles
- Lipomas
- Macrocephaly
- Learning disabilities
- ADHD
- Developmental delay
The presenting characteristics of DDS include loss of playfulness, decreased appetite, weight loss, growth delay, abnormal skeletal development, insomnia, abdominal pain, constipation, and anuria.
Clinically, Denys–Drash is characterized by the triad of pseudohermaphroditism, mesangial renal sclerosis, and Wilms' tumor. The condition first manifests as early nephrotic syndrome and progresses to mesangial renal sclerosis, and ultimately renal failure—usually within the first three years of life.
Rapidly progressive glomerulonephritis (RPGN) is a syndrome of the kidney that is characterized by a rapid loss of renal function, (usually a 50% decline in the glomerular filtration rate (GFR) within 3 months) with glomerular crescent formation seen in at least 50% or 75% of glomeruli seen on kidney biopsies. If left untreated, it rapidly progresses into acute renal failure and death within months. In 50% of cases, RPGN is associated with an underlying disease such as Goodpasture syndrome, systemic lupus erythematosus or granulomatosis with polyangiitis; the remaining cases are idiopathic. Regardless of the underlying cause, RPGN involves severe injury to the kidneys' glomeruli, with many of the glomeruli containing characteristic glomerular crescents (crescent-shaped scars).
Acute kidney injuries can be present on top of chronic kidney disease, a condition called acute-on-chronic kidney failure (AoCRF). The acute part of AoCRF may be reversible, and the goal of treatment, as with AKI, is to return the patient to baseline kidney function, typically measured by serum creatinine. Like AKI, AoCRF can be difficult to distinguish from chronic kidney disease if the patient has not been monitored by a physician and no baseline (i.e., past) blood work is available for comparison.
Membranous glomerulonephropathy (MGN) is a slowly progressive disease of the kidney affecting mostly people between ages of 30 and 50 years, usually Caucasian.
It is the second most common cause of nephrotic syndrome in adults, with focal segmental glomerulosclerosis (FSGS) recently becoming the most common.
HIV-associated nephropathy (HIVAN) refers to kidney disease developing in association with HIV infection. The most common, or "classical", type of HIV-associated nephropathy is a collapsing focal segmental glomerulosclerosis (FSGS), though other forms of kidney disease may also occur with HIV. Regardless of the underlying histology, renal disease in HIV-positive patients is associated with an increased risk of death.
HIVAN may be caused by direct infection of the renal cells with the HIV-1 virus, with resulting renal damage through the viral gene products. It could also be caused by changes in the release of cytokines during HIV infection. Usually occurs only in advanced disease and approximately 80% of patients with HIVAN have a CD4 count of less than 200. HIVAN presents with nephrotic syndrome and progressive kidney failure. Despite being a cause of chronic kidney failure, kidney sizes are usually normal or large.