Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Symptoms for Alström syndrome generally appear during infancy with great variability in age. Some of the symptoms include:
- Heart failure (Dilated cardiomyopathy) in over 60% of cases, usually within the first few weeks after birth, but sometimes the onset is in adolescence or adulthood.
- Light sensitivity and vision problems (Cone-rod dystrophy) in all cases, usually within 15 months of birth and progressively worsening until about 20 years of age
- Delays in early, developmental milestones in 50% of cases, learning disabilities in about 30% of cases
- Obesity in 100% of cases, apparent by 5 years of age, but often apparent in infancy (Alström infants usually have normal birth weights, and by adolescence, weights tend to be in the high-normal to normal range)
- Nystagmus (usually affects the children) one of the first symptoms to occur which causes involuntary rapid eye movement.
- Heart failure (Dilated cardiomyopathy) in over 60% of cases, usually within the first few weeks after birth, but sometimes the onset is in adolescence or adulthood.(chronic)
- Mild to moderate bilateral sensorineural hearing loss.
- Type 2 diabetes usually occurs in early childhood.
- Hyperinsulinemia/ insulin resistance—development of high level of insulin in blood.
- Steatosis (fatty liver) and elevated transaminases (liver enzymes) often develop in childhood and can progress in some patients to cirrhosis and liver failure.
- Endocrine dysfunctions may occur where the patient may experience an under or over active thyroid gland, weak growth hormone, increased androgen in females, and low testosterone in males.
- Slowly progressive kidney failure can occur in the second to fourth decade of life.
Symptoms include:
- intellectual disability (more than half of the patients have an IQ below 50)
- microcephaly
- sometimes pancytopenia (low blood counts)
- cryptorchidism
- low birth weight
- dislocations of pelvis and elbow
- unusually large eyes
- low ears
- small chin
Typically, the signs and symptoms of juvenile nephronophthisis are limited to the kidneys. They include polyuria, polydipsia, weakness, and fatigue.
Anemia, growth retardation, no hypertension.
Proteinuria and hematuria are usually absent. Polyuria is resistant to vasopressin.
When other organ systems are affected, symptoms can include situs inversus, heart abnormalities, and liver fibrosis. Juvenile nephronophthisis can also be associated with other rare disorders, including Senior–Løken syndrome and Joubert syndrome.
The main consequence of impaired ciliary function is reduced or absent mucus clearance from the lungs, and susceptibility to chronic recurrent respiratory infections, including sinusitis, bronchitis, pneumonia, and otitis media. Progressive damage to the respiratory system is common, including progressive bronchiectasis beginning in early childhood, and sinus disease (sometimes becoming severe in adults). However, diagnosis is often missed early in life despite the characteristic signs and symptoms. In males, immotility of sperm can lead to infertility, although conception remains possible through the use of in vitro fertilization and, as well as this, there have been reported cases where sperm were able to move. Trials have also shown that there is a marked reduction in fertility in female sufferers of Kartagener's Syndrome due to dysfunction of the oviductal cilia.
Many affected individuals experience hearing loss and show symptoms of otitis media which demonstrate variable responsiveness to the insertion of myringotomy tubes or grommets. Some patients have a poor sense of smell, which is believed to accompany high mucus production in the sinuses (although others report normal - or even acute - sensitivity to smell and taste). Clinical progression of the disease is variable, with lung transplantation required in severe cases. Susceptibility to infections can be drastically reduced by an early diagnosis. Treatment with various chest physiotherapy techniques has been observed to reduce the incidence of lung infection and to slow the progression of bronchiectasis dramatically. Aggressive treatment of sinus disease beginning at an early age is believed to slow long-term sinus damage (although this has not yet been adequately documented). Aggressive measures to enhance clearance of mucus, prevent respiratory infections, and treat bacterial superinfections have been observed to slow lung-disease progression. Although the true incidence of the disease is unknown, it is estimated to be 1 in 32,000,
although the actual incidence may be as high as 1 in 15,000.
It involves numerous anomalies including:
- Post-axial polydactyly
- Congenital heart defects (most commonly an atrial septal defect producing a common atrium, occurring in 60% of affected individuals)
- Teeth present at birth (natal teeth)
- Fingernail dysplasia
- Short-limbed dwarfism, mesomelic pattern
- Short ribs
- Cleft palate
- Malformation of the wrist bones (fusion of the hamate and capitate bones).
Marshall JD et al. provided a comprehensive guidance for diagnostic criteria in their 2007 publication.
Birth – 2 years:
Minimum diagnosis requires 2 major criteria or 1 major and 2 minor criteria.
Major criteria are:
1. ALMS1 mutation in 1 allele and/or family history of Alström Syndrome
2. Vision pathology (nystagmus, photophobia).
Minor criteria are:
1. Obesity
2. Dilated cardiomyopathy with congestive heart failure.
Other variable supportive evidence:
Recurrent pulmonary infections, normal digits, delayed developmental milestones.
At 3–14 years of age:
2 major criteria or 1 major and 3 minor criteria.
Major criteria are:
1. ALMS1 mutation in 1 allele and/or family history of Alström Syndrome,
2. Vision pathology (nystagmus, photophobia, diminished acuity). If old enough for testing: cone dystrophy by ERG.
Minor Criteria:
1. Obesity and/or insulin resistance and/or Type 2 Diabetes
2. History of dilated cardiomyopathy with congestive heart failure
3. Hearing loss
4. Hepatic dysfunction
5. Renal failure
6. Advanced bone age
Variable supportive evidence:
Recurrent pulmonary infections, normal digits, delayed developmental milestones, hyperlipidemia, scoliosis, flat wide feet
hypothyroidism, hypertension, recurrent urinary tract infection, growth hormone deficiency.
Presentation 15 years – adulthood:
2 major and 2 minor criteria or 1 major and 4 minor criteria.
Major criteria are:
1) ALMS1 mutation in 1 allele and/or family history of Alström Syndrome.
2) Vision pathology (history of nystagmus in infancy/childhood, legal blindness, cone and rod dystrophy by ERG).
Minor criteria:
1) Obesity and/or insulin resistance and/or Type 2 Diabetes
2) History of dilated cardiomyopathy with congestive heart failure.
3) Hearing loss
4) Hepatic dysfunction
5) Renal failure
6) Short stature
7) Males: hypogonadism, Females: irregular menses and/or hyperandrogenism
Other supportive features:
Recurrent pulmonary infections, normal digits, history of developmental delay, hyperlipidemia, scoliosis, flat wide feet,
hypothyroidism, hypertension, recurrent urinary tract infections/urinary dysfunction, growth hormone deficiency, alopecia.
Bardet–Biedl syndrome is a pleiotropic disorder with variable expressivity and a wide range of clinical variability observed both within and between families. The main clinical features are rod–cone dystrophy, with childhood-onset visual loss preceded by night blindness; postaxial polydactyly; truncal obesity that manifests during infancy and remains problematic throughout adulthood; specific learning difficulties in some but not all individuals; male hypogenitalism and complex female genitourinary malformations; and renal dysfunction, a major cause of morbidity and mortality. There is a wide range of secondary features that are sometimes associated with BBS including
Approximately 100 cases have been described in the literature to date.
The facial features are characteristic and include
- Deep set eyes
- Strabismus
- Myopia
- Marked nasal root
- Broad and/or beaked nasal bridge
- Prominent Cupid's bow
- Everted lower lip
- Tented upper lip
- Large mouth
- Widely spaced teeth
- Wide and shallow palate
- Ears with thick and overfolded helix
Most have a smiling appearance.
Intellectual disability is severe. Language is absent or limited to only a few words. Stereotypic movements particularly of the arms, wrists and fingers is almost universal. Hypotonia is common (75%) as is an unsteady gait. All have delayed walking. Other features include a single (simian) palmar crease, long, slender fingers, flat feet and cryptorchidism (in males). Finger clubbing and the presence of fetal pads is common. Hyperventilation occurs in over half and is frequently followed by apnea and cyanosis. During these episodes aerophagia may occur. Constipation is common. Microcephaly and seizures may occur. Hypopigmented skin macules have occasionally been reported.
Most of the signs and symptoms of the Joubert syndrome appear very early in infancy with most children showing delays in gross motor milestones. Although other signs and symptoms vary widely from individual to individual, they generally fall under the hallmark of cerebellum involvement or in this case, lack thereof. Consequently, the most common features include ataxia (lack of muscle control), hyperpnea (abnormal breathing patterns), sleep apnea, abnormal eye and tongue movements, and hypotonia in early childhood. Other malformations such as polydactyly (extra fingers and toes), cleft lip or palate, tongue abnormalities, and seizures may also occur. Developmental delays, including cognitive, are always present to some degree.
Those suffering from this syndrome often exhibit specific facial features such as a broad forehead, arched eyebrows, ptosis (droopy eyelids), hypertelorism (widely spaced eyes), low-set ears and a triangle shaped mouth. Additionally, this disease can include a broad range of other abnormalities to other organ systems such as retinal dystrophy, kidney diseases, liver diseases, skeletal deformities and endocrine (hormonal) problems.
Juvenile nephronophthisis causes fibrosis and scarring of the kidneys, which accounts for the symptoms observed. The kidneys also often have corticomedullary cysts.
- Inability to conserve sodium because of defect of tubules leading to polyuria and polydipsia.
- Anemia is attributed to a deficiency of erythropoietin production by failing kidneys.
- Growth retardation, malaise and pallor are secondary to anemia.
- No hypertension as nephronophthisis is a salt-losing enteropathy.
Senior–Løken syndrome is a congenital eye disorder, first characterized in 1961. It is a rare, ciliopathic, autosomal recessive disorder characterized by nephronophthisis and progressive eye disease.
A wide variety of symptoms are potential clinical features of ciliopathy.
- Chemosensation abnormalities, typically via ciliated epithelial cellular dysfunction.
- Defective thermosensation or mechanosensation, often via ciliated epithelial cellular dysfunction.
- Cellular motility dysfunction
- Issues with displacement of extracellular fluid
- Paracrine signal transduction abnormalities
In organisms of normal health, cilia are critical for:
- development
- homeostasis
- reproduction
Meckel syndrome (also known as Meckel–Gruber Syndrome, Gruber Syndrome, Dysencephalia Splanchnocystica) is a rare, , ciliopathic, genetic disorder, characterized by renal cystic dysplasia, central nervous system malformations (occipital encephalocele), polydactyly (post axial), hepatic developmental defects, and pulmonary hypoplasia due to oligohydramnios.
Meckel–Gruber syndrome is named for Johann Meckel and Georg Gruber.
Orofaciodigital syndrome type 1 is diagnosed through genetic testing. Some symptoms of Orofaciodigital syndrome type 1 are oral features such as, split tongue, benign tumors on the tongue, cleft palate, hypodontia and other dental abnormalities. Other symptoms of the face include hypertelorism and micrognathia. Bodily abnormalities such as webbed, short, joined, or abnormally curved fingers and toes are also symptoms of Orofaciodigital syndrome type 1. The most frequent symptoms are accessory oral frenulum, broad alveolar ridges, frontal bossing, high palate, hypertelorism, lobulated tongue, median cleft lip, and wide nasal bridge. Genetic screening of the OFD1 gene is used to officially diagnose a patient who has the syndrome, this is detected in 85% of individuals who are suspected to have Orofaciodigital syndrome type 1.
Bardet–Biedl syndrome (BBS) is a ciliopathic human genetic disorder that produces many effects and affects many body systems. It is characterized principally by obesity, retinitis pigmentosa, polydactyly, hypogonadism, and renal failure in some cases. Historically, slower mental processing has also been considered a principal symptom but is now not regarded as such.
Arthrogryposis–renal dysfunction–cholestasis syndrome (also known as "ARC syndrome") is a cutaneous condition caused by a mutation in the VPS33B gene. Most of the cases have been survived for infancy. Recently, College of Medical Sciences in Nepal reports a case of ARC syndrome in a girl at the age of more than 18 years.
It is characterized by developmental defects including cryptophthalmos (where the eyelids fail to separate in each eye), and malformations in the genitals (such as micropenis, cryptorchidism or clitoromegaly). Congenital malformations of the nose, ears, larynx and renal system, as well as mental retardation, manifest occasionally. Syndactyly (fused fingers or toes) has also been noted.
A ciliopathy is a genetic disorder of the cellular cilia or the cilia anchoring structures, the basal bodies, or of ciliary function.
Although ciliopathies are usually considered to involve proteins that localize to motile and/or immotile (primary) cilia or centrosomes, it is possible for ciliopathies to be associated with proteins such as XPNPEP3, which localizes to mitochondria but is believed to affect ciliary function through proteolytic cleavage of ciliary proteins.
Significant advances in understanding the importance of cilia were made beginning in the mid-1990s. However, the physiological role that this organelle plays in most tissues remains elusive. Additional studies of how ciliary dysfunction can lead to such severe disease and developmental pathologies is a subject of current research.
One Finnish study which followed 25 cases from 18 families found that half the infants died within 3 days of birth and the other half died before 4 months of age.
Orofaciodigital syndrome 1 (OFD1), also called Papillon-League and Psaume syndrome, is an X-linked congenital disorder characterized by malformations of the face, oral cavity, and digits with polycystic kidney disease and variable involvement of the central nervous system.
Infantile, juvenile, and adolescent forms of nephronophthisis have been identified. Although the range of characterizations is broad, people affected by nephronophthisis typically present with polyuria (production of a large volume of urine), polydipsia (excessive liquid intake), and after several months to years, end-stage kidney disease, a condition necessitating either dialysis or a kidney transplant in order to survive. Some individuals that suffer from nephronophthisis also have so-called "extra-renal symptoms" which can include tapetoretinal degeneration, liver problems, ocularmotor apraxia, and cone-shaped epiphysis (Saldino-Mainzer syndrome).
Cognitive ability in individuals with 18p- varies widely, with most falling in the mild to moderate range of impairment, though there have been some reports of people with impairment in the severe to profound range. These individuals may have had holoprosencephaly, which is frequently associated with severe impairment.
Speech deficits are quite common within this population. Frequently, expressive speech lags behind other developmental parameters.
GRACILE syndrome is a very rare autosomal recessive genetic disorder, one of the Finnish heritage diseases. It is caused by mutation in BCS1L gene that occurs in at least 1 out of 47,000 live births in Finnish people.
GRACILE is an acronym for growth retardation, amino aciduria (amino acids in the urine), cholestasis, iron overload, lactic acidosis, and early death. Other names for this syndrome include Finnish lethal neonatal metabolic syndrome (FLNMS); lactic acidosis, Finnish, with hepatic hemosiderosis; and Fellman syndrome.
Children with 18p- have an increased incidence of ear infections, often requiring the placement of PE tubes.
Primary ciliary dyskinesia (PCD), also called immotile ciliary syndrome or Kartagener syndrome, is a rare, ciliopathic, autosomal recessive genetic disorder that causes defects in the action of cilia lining the respiratory tract (lower and upper, sinuses, Eustachian tube, middle ear), fallopian tube, and flagella of sperm cells. The phrase "immotile ciliary syndrome" is no longer favored as the cilia do have movement, but are merely inefficient or unsynchronized.
Respiratory epithelial motile cilia, which resemble microscopic "hairs" (although structurally and biologically unrelated to hair), are complex organelles that beat synchronously in the respiratory tract, moving mucus toward the throat. Normally, cilia beat 7 to 22 times per second, and any impairment can result in poor mucociliary clearance, with subsequent upper and lower respiratory infection. Cilia also are involved in other biological processes (such as nitric oxide production), which are currently the subject of dozens of research efforts. As the functions of cilia become better understood, the understanding of PCD should be expected to advance.