Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The signs and symptoms in glycogen storage disease type IX include:
- Enlarged liver
- Slowed growth
- Motor development delay (mild)
- Low blood sugar accompanied by ketosis
- Lack of muscle tone
Most of these signs and symptoms diminish as adulthood sets in.
Patients generally have a benign course, and typically present with hepatomegaly and growth retardation early in childhood. Mild hypoglycemia, hyperlipidemia, and hyperketosis may occur. Lactic acid and uric acid levels may be normal. However, lactic acidosis may occur during fasting.
Classic phosphofructokinase deficiency is the most common type of this disorder. This type presents with exercise-induced muscle cramps and weakness (sometimes rhabdomyolysis), myoglobinuria, as well as with haemolytic anaemia causing dark urine a few hours later.
Hyperuricemia is common, due to the kidneys' inability to process uric acid following damage resulting from processing myoglobin. Nausea and vomiting following strenuous exercise is another common indicator of classic PFK deficiency. Many patients will also display high levels of bilirubin, which can lead to a jaundiced appearance. Symptoms for this type of PFK deficiency usually appear in early childhood.
Glycogen storage disease type III presents during infancy with hypoglycemia and failure to thrive. Clinical examination usually reveals hepatomegaly. Muscular disease, including hypotonia and cardiomyopathy, usually occurs later. The liver pathology typically regresses as the individual enter adolescence, as does splenomegaly, should the individual so develop it.
The onset of this disease is usually noticed in childhood, but often not diagnosed until the third or fourth decade of life. Symptoms include exercise intolerance with muscle pain, early fatigue, painful cramps, and myoglobin in the urine (often provoked by a bout of exercise). Myoglobinuria may result from the breakdown of skeletal muscle known as rhabdomyolysis, a condition in which muscle cells breakdown, sending their contents into the bloodstream.
Patients may exhibit a “second wind” phenomenon. This is characterized by the patient’s better tolerance for aerobic exercise such as walking and cycling after approximately 10 minutes. This is attributed to the combination of increased blood flow and the ability of the body to find alternative sources of energy, like fatty acids and proteins. In the long term, patients may exhibit renal failure due to the myoglobinuria, and with age, patients may exhibit progressively increasing weakness and substantial muscle loss.
Patients may present at emergency rooms with severe fixed contractures of the muscles and often severe pain. These require urgent assessment for rhabdomyolysis as in about 30% of cases this leads to acute renal failure. Left untreated this can be life-threatening. In a small number of cases compartment syndrome has developed, requiring prompt surgical referral.
Onset of late infantile GM1 is typically between ages 1 and 3 years.
Neurological symptoms include ataxia, seizures, dementia, and difficulties with speech.
The infantile form usually comes to medical attention within the first few months of life. The usual presenting features are cardiomegaly (92%), hypotonia (88%), cardiomyopathy (88%), respiratory distress (78%), muscle weakness (63%), feeding difficulties (57%) and failure to thrive (50%).
The main clinical findings include floppy baby appearance, delayed motor milestones and feeding difficulties. Moderate hepatomegaly may be present. Facial features include macroglossia, wide open mouth, wide open eyes, nasal flaring (due to respiratory distress), and poor facial muscle tone. Cardiopulmonary involvement is manifested by increased respiratory rate, use of accessory muscles for respiration, recurrent chest infections, decreased air entry in the left lower zone (due to cardiomegaly), arrhythmias and evidence of heart failure.
Median age at death in untreated cases is 8.7 months and is usually due to cardiorespiratory failure.
Late-onset PFK deficiency, as the name suggests, is a form of the disease that presents later in life. Common symptoms associated with late-onset phosphofructokinase deficiency are myopathy, weakness and fatigue. Many of the more severe symptoms found in the classic type of this disease are absent in the late-onset form.
Symptoms of early infantile GM1 (the most severe subtype, with onset shortly after birth) may include neurodegeneration, seizures, liver enlargement (hepatomegaly), spleen enlargement (splenomegaly), coarsening of facial features, skeletal irregularities, joint stiffness, distended abdomen, muscle weakness, exaggerated startle response to sound, and problems with gait.
About half of affected patients develop cherry-red spots in the eye.
Children may be deaf and blind by age 1 and often die by age 3 from cardiac complications or pneumonia.
- Autosomal recessive disorder; beta-galactosidase deficiency; neuronal storage of GM1 ganglioside and visceral storage of galactosyl oligosaccharides and keratan sulfate.
- Early psychomotor deterioration: decreased activity and lethargy in the first weeks; never sit; feeding problems - failure to thrive; visual failure (nystagmus noted) by 6 months; initial hypotonia; later spasticity with pyramidal signs; secondary microcephaly develops; decerebrate rigidity by 1 year and death by age 1–2 years (due to pneumonia and respiratory failure); some have hyperacusis.
- Macular cherry-red spots in 50% by 6–10 months; corneal opacities in some
- Facial dysmorphology: frontal bossing, wide nasal bridge, facial edema (puffy eyelids); peripheral edema, epicanthus, long upper lip, microretrognathia, gingival hypertrophy (thick alveolar ridges), macroglossia
- Hepatomegaly by 6 months and splenomegaly later; some have cardiac failure
- Skeletal deformities: flexion contractures noted by 3 months; early subperiosteal bone formation (may be present at birth); diaphyseal widening later; demineralization; thoracolumbar vertebral hypoplasia and beaking at age 3–6 months; kyphoscoliosis. *Dysostosis multiplex (as in the mucopolysaccharidoses)
- 10–80% of peripheral lymphocytes are vacuolated; foamy histiocytes in bone marrow; visceral mucopolysaccharide storage similar to that in Hurler disease; GM1 storage in cerebral gray matter is 10-fold elevated (20–50-fold increased in viscera)
- Galactose-containing oligosacchariduria and moderate keratan sulfaturia
- Morquio disease Type B: Mutations with higher residual beta-galactosidase activity for the GM1 substrate than for keratan sulfate and other galactose-containing oligosaccharides have minimal neurologic involvement but severe dysostosis resembling Morquio disease type A (Mucopolysaccharidosis type 4).
This form differs from the infantile principally in the relative lack of cardiac involvement. The onset is more insidious and has a slower progression. Cardiac involvement may occur but is milder than in the infantile form. Skeletal involvement is more prominent with a predilection for the lower limbs.
Late onset features include impaired cough, recurrent chest infections, hypotonia, progressive muscle weakness, delayed motor milestones, difficulty swallowing or chewing and reduced vital capacity.
Prognosis depends on the age of onset on symptoms with a better prognosis being associated with later onset disease.
The symptoms of CCD are variable, but usually involve hypotonia (decreased muscle tone) at birth, mild delay in child development (highly variable between cases), weakness of the facial muscles, and skeletal malformations such as scoliosis and hip dislocation.
Symptoms may be present at birth or may appear at any stage of life. There appears to be a growing number of people who do not become symptomatic until adulthood to middle age. While generally not progressive, again there appears to be a growing number of people who do experience a slow clinically significant progression of symptomatology. These cases may hypothetically be due to the large number of gene mutations of ryanodine receptor malfunction, and with continued research may in fact be found to be clinical variants.
Glycogen storage disease type IX is a hereditary deficiency of glycogen phosphorylase kinase B that affects the liver and skeletal muscle tissue. It is inherited in an X-linked or autosomal recessive manner.
Mucolipidosis II (ML II) is a particularly severe form of ML that has a significant resemblance to another mucopolysaccharidoses called Hurler syndrome. Generally only laboratory testing can distinguish the two as the presentation is so similar. There are high plasma levels of lysosomal enzymes and are often fatal in childhood. Typically, by the age of 6 months, failure to thrive and developmental delays are obvious symptoms of this disorder. Some physical signs, such as abnormal skeletal development, coarse facial features, and restricted joint movement, may be present at birth. Children with ML II usually have enlargement of certain organs, such as the liver (hepatomegaly) or spleen (splenomegaly), and sometimes even the heart valves. Affected children often have stiff claw-shaped hands and fail to grow and develop in the first months of life. Delays in the development of their motor skills are usually more pronounced than delays in their cognitive (mental processing) skills. Children with ML II eventually develop a clouding on the cornea of their eyes and, because of their lack of growth, develop short-trunk dwarfism (underdeveloped trunk). These young patients are often plagued by recurrent respiratory tract infections, including pneumonia, otitis media (middle ear infections), bronchitis and carpal tunnel syndrome. Children with ML II generally die before their seventh year of life, often as a result of congestive heart failure or recurrent respiratory tract infections.
Neutral lipid storage disease (also known as Chanarin–Dorfman syndrome) is an autosomal recessive disorder characterized by accumulation of triglycerides in the cytoplasm of leukocytes, muscle, liver, fibroblasts, and other tissues.
It can be associated with "CGI58".
Glycogen storage disease type III is an autosomal recessive metabolic disorder and inborn error of metabolism (specifically of carbohydrates) characterized by a deficiency in glycogen debranching enzymes. It is also known as Cori's disease in honor of the 1947 Nobel laureates Carl Cori and Gerty Cori. Other names include Forbes disease in honor of clinician Gilbert Burnett Forbes (1915–2003), an American Physician who further described the features of the disorder, or limit dextrinosis, due to the limit dextrin-like structures in cytosol. Limit dextrin is the remaining polymer produced after hydrolysis of glycogen. Without glycogen debranching enzymes to further convert these branched glycogen polymers to glucose, limit dextrinosis abnormally accumulates in the cytoplasm.
Glycogen is a molecule the body uses to store carbohydrate energy. Symptoms of GSD-III are caused by a deficiency of the enzyme amylo-1,6 glucosidase, or debrancher enzyme. This causes excess amounts of an abnormal glycogen to be deposited in the liver, muscles and, in some cases, the heart.
Gangliosidosis contains different types of lipid storage disorders caused by the accumulation of lipids known as gangliosides. There are two distinct genetic causes of the disease. Both are autosomal recessive and affect males and females equally.
Glycogen storage disease type IV, also known as Anderson’s Disease, is a form of glycogen storage disease, which is caused by an inborn error of metabolism. It is the result of a mutation in the GBE1 gene, which causes a defect in the glycogen branching enzyme. Therefore, glycogen is not made properly and abnormal glycogen molecules accumulate in cells; most severely in cardiac and muscle cells. The severity of this disease varies on the amount of enzyme produced. Glycogen Storage Disease Type IV is autosomal recessive, which means each parent has a mutant copy of the gene but show no symptoms of the disease. It affects 1 in 800,000 individuals worldwide, with 3% of all Glycogen Storage Diseases being type IV.
It is also known as:
- Glycogenosis type IV
- Glycogen branching enzyme deficiency
- Polyglucosan body disease
- Amylopectinosis
The eponym "Andersen's disease" is sometimes used, for Dorothy Hansine Andersen.
Mutations in GBE1 can also cause a milder disease in adults called adult polyglucosan body disease.
Signs and symptoms include (for each of the following causes):
- Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like syndrome (MELAS)
- Varying degrees of cognitive impairment and dementia
- Lactic acidosis
- Strokes
- Transient ischemic attacks
- Hearing loss
- Weight loss
- Myoclonic epilepsy and ragged-red fibers (MERRF)
- Progressive myoclonic epilepsy
- Clumps of diseased mitochondria accumulate in muscle fibers and appear as "ragged-red fibers" when muscle is stained with modified Gömöri trichrome stain
- Short stature
- Kearns-Sayre syndrome (KSS)
- External ophthalmoplegia
- Cardiac conduction defects
- Sensorineural hearing loss
- Chronic progressive external ophthalmoplegia (CPEO)
- Progressive ophthalmoparesis
- Symptomatic overlap with other mitochondrial myopathies
Individuals with Refsum disease present with neurologic damage, cerebellar degeneration, and peripheral neuropathy. Onset is most commonly in childhood/adolescence with a progressive course, although periods of stagnation or remission occur. Symptoms also include ataxia, scaly skin (ichthyosis), difficulty hearing, and eye problems including retinitis pigmentosa, cataracts, and night blindness. In 80% of patients diagnosed with Refsum disease, sensorineural hearing loss has been reported. This is hearing loss as the result of damage to the inner ear or the nerve connected to ear to the brain.
The most common clinical history in patients with glycogen-storage disease type 0 (GSD-0) is that of an infant or child with symptomatic hypoglycemia or seizures that occur before breakfast or after an inadvertent fast. In affected infants, this event typically begins after they outgrow their nighttime feeds. In children, this event may occur during acute GI illness or periods of poor enteral intake.
Mild hypoglycemic episodes may be clinically unrecognized, or they may cause symptoms such as drowsiness, sweating, lack of attention, or pallor. Uncoordinated eye movements, disorientation, seizures, and coma may accompany severe episodes.
Glycogen-storage disease type 0 affects only the liver. Growth delay may be evident with height and weight percentiles below average. Abdominal examination findings may be normal or reveal only mild hepatomegaly.Signs of acute hypoglycemia may be present, including the following:
Central core disease (CCD), also known as central core myopathy, is an autosomal dominant congenital myopathy (inborn muscle disorder). It was first described by Shy and Magee in 1956. It is characterized by the appearance of the myofibril under the microscope.
Symptoms present by eight months of age and are marked by developmental delay followed by neurological complications such as seizures, involuntary eye movements, and ataxia, involuntary muscle movements and failure to gain weight and grow at the expected rate (failure to thrive). Babies with this condition also have and enlarged liver and spleen (hepatosplenomegaly) and enlarged heart (cardiomegaly).
Glycogen storage disease type V (GSD-V) is a metabolic disorder, more specifically a glycogen storage disease, caused by a deficiency of myophosphorylase. Its incidence is reported as 1 in 100,000, approximately the same as glycogen storage disease type I.
The disease was first reported in 1951 by Dr. Brian McArdle of Guy's Hospital, London.
Common symptoms of the disease are weakness and atrophy in the distal muscles of the lower limbs which progresses to the hands and arms, then to the trunk, neck and face. Respiratory impairment often follows.