Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Adult T-cell leukemia/lymphoma (ATL or ATLL) is a rare cancer of the immune system's own T-cells.
Human T cell leukemia/lymphotropic virus type 1 (HTLV-1) is believed to be the cause of it, in addition to several other diseases.
ATL is usually a highly aggressive non-Hodgkin's lymphoma with no characteristic histologic appearance except for a diffuse pattern and a mature T-cell phenotype. Circulating lymphocytes with an irregular nuclear contour (leukemic cells) are frequently seen. Several lines of evidence suggest that HTLV-1 causes ATL. This evidence includes the frequent isolation of HTLV-1 from patients with this disease and the detection of HTLV-1 proviral genome in ATL leukemic cells. ATL is frequently accompanied by visceral involvement, hypercalcemia, skin lesions, and lytic bone lesions. Bone invasion and osteolysis, features of bone metastases, commonly occur in the setting of advanced solid tumors, such as breast, prostate, and lung cancers, but are less common in hematologic malignancies. However, patients with HTLV-1–induced ATL and multiple myeloma are predisposed to the development of tumor-induced osteolysis and hypercalcemia. One of the striking features of ATL and multiple myeloma induced bone disease is that the bone lesions are predominantly osteolytic with little associated osteoblastic activity. In patients with ATL, elevated serum levels of IL-1, TGFβ, PTHrP, macrophage inflammatory protein (MIP-1α), and receptor activator of nuclear factor-κB ligand (RANKL) have been associated with hypercalcemia. Immunodeficient mice that received implants with leukemic cells from patients with ATL or with HTLV-1–infected lymphocytes developed hypercalcemia and elevated serum levels of PTHrP. Most patients die within one year of diagnosis.
Infection with HTLV-1, like infection with other retroviruses, probably occurs for life and can be inferred when antibody against HTLV-1 is detected in the serum.
Hypoglycemia in early infancy can cause jitteriness, lethargy, unresponsiveness, or seizures. The most severe forms may cause macrosomia in utero, producing a large birth weight, often accompanied by abnormality of the pancreas. Milder hypoglycemia in infancy causes hunger every few hours, with increasing jitteriness or lethargy. Milder forms have occasionally been detected by investigation of family members of infants with severe forms, adults with the mildest degrees of congenital hyperinsulinism have a decreased tolerance for prolonged fasting. Other presentations are:
The variable ages of presentations and courses suggest that some forms of congenital hyperinsulinism, especially those involving abnormalities of K channel function, can worsen or improve with time the potential harm from hyperinsulinemic hypoglycemia depends on the severity, and duration. Children who have recurrent hyperinsulinemic hypoglycemia in infancy can suffer harm to the brain
IgG4-related disease (IgG4-RD), formerly known as IgG4-related systemic disease, is a chronic inflammatory condition characterized by tissue infiltration with lymphocytes and IgG4-secreting plasma cells, various degrees of fibrosis (scarring) and a usually prompt response to oral steroids. In approximately 51–70% of people with this disease, "serum" IgG4 concentrations are elevated during an acute phase.
It is a relapsing–remitting disease associated with a tendency to mass forming, tissue-destructive lesions in multiple sites, with a characteristic histopathological appearance in whichever site is involved. Inflammation and the deposition of connective tissue in affected anatomical sites can lead to organ dysfunction, or even organ failure, if not treated.
Early detection is important to avoid organ damage and potentially serious complications. Treatment is recommended in all symptomatic cases of IgG4-RD and also in asymptomatic IgG4-RD involving certain anatomical sites.
The differential diagnosis of congenital hyperinsulinism is consistent with PMM2-CDG, as well as several syndromes. Among other DDx we find the following that are listed:
- MPI-CDG
- Beckwith-Wiedemann syndrome
- Sotos syndrome
- Usher 1 syndromes
IgG4-related disease has been described as an indolent condition. Although possibly based on opinion rather than on objective assessments, symptoms, if any, are commonly described as mild in the medical literature. This can be in spite of considerable underlying organ destruction. People are often described as being generally well at the time of diagnosis, although some may give a history of weight loss.
Pain is generally not a feature of the inflammation. However it may occur as a secondary effect, for example due to either obstruction or compression.
Often diagnosis is made due to the presence of painless swellings or mass lesions, or due to complications of masses, e.g. jaundice due to involvement of the pancreas, biliary tree or liver. Symptoms are commonly attributed to other conditions and other diagnoses may have been made years before diagnosis, e.g. urinary symptoms in men attributed to common prostate conditions. Lesions may also be detected incidentally on radiological images, but can be easily misdiagnosed as malignancies.
Reported cases do include some significant symptoms or findings however:
Congenital adrenal hyperplasia (CAH) are any of several autosomal recessive diseases resulting from mutations of genes for enzymes mediating the biochemical steps of production of mineralocorticoids, glucocorticoids or sex steroids from cholesterol by the adrenal glands (steroidogenesis).
Most of these conditions involve excessive or deficient production of sex steroids and can alter development of primary or secondary sex characteristics in some affected infants, children, or adults.
The symptoms of CAH vary depending upon the form of CAH and the sex of the patient. Symptoms can include:
Due to inadequate mineralocorticoids:
- vomiting due to salt-wasting leading to dehydration and death
Due to excess androgens:
- functional and average sized penis in cases involving extreme virilization (but no sperm)
- ambiguous genitalia, in some females, such that it can be initially difficult to identify external genitalia as "male" or "female".
- early pubic hair and rapid growth in childhood
- precocious puberty or failure of puberty to occur (sexual infantilism: absent or delayed puberty)
- excessive facial hair, virilization, and/or menstrual irregularity in adolescence
- infertility due to anovulation
- clitoromegaly, enlarged clitoris and shallow vagina
Due to insufficient androgens and estrogens:
- Undervirilization in XY males, which can result in apparently female external genitalia
- In females, hypogonadism can cause sexual infantilism or abnormal pubertal development, infertility, and other reproductive system abnormalities
The regulatory T cells (Tregs ), formerly known as suppressor T cells, are a subpopulation of T cells that modulate the immune system, maintain tolerance to self-antigens, and prevent autoimmune disease. Tregs are immunosuppressive and generally suppress or downregulate induction and proliferation of effector T cells. Tregs express the biomarkers CD4, FOXP3, and CD25 and are thought to be derived from the same lineage as naïve CD4 cells. Because effector T cells also express CD4 and CD25, Tregs are very difficult to effectively discern from effector CD4+, making them difficult to study. Recent research has found that the cytokine TGFβ is essential for Tregs to differentiate from naïve CD4+ cells and is important in maintaining Treg homeostasis.
Mouse models have suggested that modulation of Tregs can treat autoimmune disease and cancer and can facilitate organ transplantation. Their implications for cancer are complicated. Tregs tend to be upregulated in individuals with cancer, and they seem to be recruited to the site of many tumors. Studies in both humans and animal models have implicated that high numbers of Tregs in the tumor microenvironment is indicative of a poor prognosis, and Tregs are thought to suppress tumor immunity, thus hindering the body's innate ability to control the growth of cancerous cells. Recent immunotherapy research is studying how regulation of T cells could possibly be utilized in the treatment of cancer.
Invasive candidiasis can manifest as serious diseases including as fungemia, endocarditis, endophthalmitis, osteomyelitis, and central nervous system infections.
Evans syndrome is an autoimmune disease in which an individual's antibodies attack their own red blood cells and platelets. Both of these events may occur simultaneously or one may follow on from the other.
Its overall pathology resembles a combination of autoimmune hemolytic anemia and immune thrombocytopenic purpura. Autoimmune hemolytic anemia is a condition in which the red blood cells that normally carry oxygen and carbon dioxide are destroyed by an autoimmune process. Immune thrombocytopenic purpura is a condition in which platelets are destroyed by an autoimmune process. Platelets are a component of blood that contribute to the formation of blood clots in the body to prevent bleeding.
The syndrome was first described in 1951 by R. S. Evans and colleagues.
Symptoms of invasive candidiasis can be confused with other medical conditions, however, the most common symptoms are fever and chills that do not improve with antibiotic treatment. Other symptoms develop as the infection spreads, depending on which parts of the body are involved.
Familial hyperaldosteronism is a group of inherited conditions in which the adrenal glands, which are small glands located on top of each kidney, produce too much of the hormone aldosterone. Excess aldosterone causes the kidneys to retain more salt than normal, which in turn increases the body's fluid levels and causes high blood pressure. People with familial hyperaldosteronism may develop severe high blood pressure, often early in life. Without treatment, hypertension increases the risk of strokes, heart attacks, and kidney failure. There are other forms of hyperaldosteronism that are not inherited.
Familial hyperaldosteronism is categorized into three types, distinguished by their clinical features and genetic causes. In familial hyperaldosteronism type I, hypertension generally appears in childhood to early adulthood and can range from mild to severe. This type can be treated with steroid medications called glucocorticoids, so it is also known as glucocorticoid-remediable aldosteronism (GRA). In familial hyperaldosteronism type II, hypertension usually appears in early to middle adulthood and does not improve with glucocorticoid treatment. In most individuals with familial hyperaldosteronism type III, the adrenal glands are enlarged up to six times their normal size. These affected individuals have severe hypertension that starts in childhood. The hypertension is difficult to treat and often results in damage to organs such as the heart and kidneys. Rarely, individuals with type III have milder symptoms with treatable hypertension and no adrenal gland enlargement.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. The various types of familial hyperaldosteronism have different genetic causes.
It is unclear how common these diseases are. All together they appear to make up less than 1% of cases of hyperaldosteronism.
The less-common signs and symptoms of Cushing's disease include the following:
- insomnia
- recurrent infection
- thin skin and stretch marks
- easy bruising
- weak bones
- acne
- balding (women)
- depression
- hip and shoulder weakness
- swelling of feet/legs
- diabetes mellitus
- erectile dysfunction
Temporal arteritis, the second type of giant cell arteritis, is also a chronic, inflammatory disease involving mid- to large-sized arteries. Temporal arteritis has a higher incidence in people of Scandinavian descent. However, the incidence rate differs based on population, region and races. Temporal arteritis is not uncommon in North America. The incidence rate is around 0.017% for individuals over 50 years of age.
Symptoms of temporal arteritis are classified as specific and nonspecific.
Nonspecific symptoms:
- Headache
- Low grade fever
- Sweating
- Anorexia (loss of appetite)
- Weight loss
- General malaise
Specific symptoms:
- Claudication of the jaw
- Engorged, tender vessels
Specific symptoms usually develop in the advanced stages of temporal arteritis.
Polyarteritis nodosa of unknown mechanism can cause testiscular pain. It is often associated with aneurysms and Hepatitis B.
Insulin resistance (IR) is a pathological condition in which cells fail to respond normally to the hormone insulin. The body produces insulin when glucose starts to be released into the bloodstream from the digestion of carbohydrates in the diet. Normally this insulin response triggers glucose being taken into body cells, to be used for energy, and inhibits the body from using fat for energy. The concentration of glucose in the blood decreases as a result, staying within the normal range even when a large amount of carbohydrates is consumed. When the body produces insulin under conditions of insulin resistance, the cells are resistant to the insulin and are unable to use it as effectively, leading to high blood sugar. Beta cells in the pancreas subsequently increase their production of insulin, further contributing to a high blood insulin level. This often remains undetected and can contribute to the development of type 2 diabetes or latent autoimmune diabetes of adults. Although this type of chronic insulin resistance is harmful, during acute illness it is actually a well-evolved protective mechanism. Recent investigations have revealed that insulin resistance helps to conserve the brain's glucose supply by preventing muscles from taking up excessive glucose. In theory, insulin resistance should even be strengthened under harsh metabolic conditions such as pregnancy, during which the expanding fetal brain demands more glucose.
People who develop type 2 diabetes usually pass through earlier stages of insulin resistance and prediabetes, although those often go undiagnosed. Insulin resistance is a syndrome (a set of signs and symptoms) resulting from reduced insulin activity; it is also part of a larger constellation of symptoms called the metabolic syndrome.
Insulin resistance may also develop in patients who have recently experienced abdominal or bariatric procedures. This acute form of insulin resistance that may result post-operatively tends to increase over the short term, with sensitivity to insulin typically returning to patients after about five days.
Common signs and symptoms of Cushing's disease include the following:
- weight gain
- high blood pressure
- poor short-term memory
- irritability
- excess hair growth (women)
- Impaired immunological function
- red, ruddy face
- extra fat around neck
- moon face
- fatigue
- red stretch marks
- poor concentration
- irregular menstruation
The diagnosis is made upon blood tests to confirm not only hemolytic anemia and immune thrombocytopenic purpura, but also a positive direct antiglobulin test (DAT) and an absence of any known underlying cause.
Other antibodies may occur directed against neutrophils and lymphocytes, and "immunopancytopenia" has been suggested as a better term for this syndrome.
These depend on poorly understood variations in individual biology and consequently may not be found with all people diagnosed with insulin resistance.
- Increased hunger
- Lethargy (tiredness)
- Brain fogginess and inability to focus
- High blood sugar
- Weight gain, fat storage, difficulty losing weight – for most people, excess weight is from high subcutaneous fat storage; the fat in IR is generally stored in and around abdominal organs in both males and females; it is currently suspected that hormones produced in that fat are a precipitating cause of insulin resistance
- Increased blood cholesterol levels
- Increased blood pressure; many people with hypertension are either diabetic or pre-diabetic and have elevated insulin levels due to insulin resistance; one of insulin's effects is to control arterial wall tension throughout the body
The weakness from LEMS typically involves the muscles of the proximal arms and legs (the muscles closer to the trunk). In contrast to myasthenia gravis, the weakness affects the legs more than the arms. This leads to difficulties climbing stairs and rising from a sitting position. Weakness is often relieved temporarily after exertion or physical exercise. High temperatures can worsen the symptoms. Weakness of the bulbar muscles (muscles of the mouth and throat) is occasionally encountered. Weakness of the eye muscles is uncommon. Some may have double vision, drooping of the eyelids and difficulty swallowing, but generally only together with leg weakness; this too distinguishes LEMS from myasthenia gravis, in which eye signs are much more common. In the advanced stages of the disease, weakness of the respiratory muscles may occur. Some may also experience problems with coordination (ataxia).
Three-quarters of people with LEMS also have disruption of the autonomic nervous system. This may be experienced as a dry mouth, constipation, blurred vision, impaired sweating, and orthostatic hypotension (falls in blood pressure on standing, potentially leading to blackouts). Some report a metallic taste in the mouth.
On neurological examination, the weakness demonstrated with normal testing of power is often less severe than would be expected on the basis of the symptoms. Strength improves further with repeated testing, e.g. improvement of power on repeated hand grip (a phenomenon known as "Lambert's sign"). At rest, reflexes are typically reduced; with muscle use, reflex strength increases. This is a characteristic feature of LEMS. The pupillary light reflex may be sluggish.
In LEMS associated with lung cancer, most have no suggestive symptoms of cancer at the time, such as cough, coughing blood, and unintentional weight loss. LEMS associated with lung cancer may be more severe.
Inflammation occurs in the laryngeal, tracheal and bronchial cartilages. Both of these sites are involved in 10% of persons with RP at presentation and 50% over the course of this autoimmune disease, and is more common among females.
The involvement of the laryngotracheobronchial cartilages may be severe and life-threatening; it causes one-third of all deaths among persons with RP.
Laryngeal chondritis is manifested as pain above the thyroid gland and, more importantly, as dysphonia with a hoarse voice or transient aphonia. Because this disease is relapsing, recurrent laryngeal inflammation may result in laryngomalacia or permanent laryngeal stenosis with inspiratory dyspnea that may require emergency tracheotomy as a temporary or permanent measure.
Tracheobronchial involvement may or may not be accompanied with laryngeal chondritis and is potentially the most severe manifestation of RP.
The symptoms consist of dyspnea, wheezing, a nonproductive cough, and recurrent, sometimes severe, lower respiratory tract infections.
Obstructive respiratory failure may develop as the result of either permanent tracheal or bronchial narrowing or chondromalacia with expiratory collapse of the tracheobronchial tree. Endoscopy, intubation, or tracheotomy has been shown to hasten death.
Symptoms include rapid weight gain, particularly of the trunk and face with sparing of the limbs (central obesity). Common signs include the growth of fat pads along the collarbone, on the back of the neck ("buffalo hump" or lipodystrophy), and on the face ("moon face"). Other symptoms include excess sweating, dilation of capillaries, thinning of the skin (which causes easy bruising and dryness, particularly the hands) and mucous membranes, purple or red striae (the weight gain in Cushing's syndrome stretches the skin, which is thin and weakened, causing it to hemorrhage) on the trunk, buttocks, arms, legs, or breasts, proximal muscle weakness (hips, shoulders), and hirsutism (facial male-pattern hair growth), baldness and/or extremely dry and brittle hair. In rare cases, Cushing's can cause hypocalcemia. The excess cortisol may also affect other endocrine systems and cause, for example, insomnia, inhibited aromatase, reduced libido, impotence in men, and amenorrhoea/oligomenorrhea and infertility in women due to elevations in androgens. Studies have also shown that the resultant amenorrhea is due to hypercortisolism, which feeds back onto the hypothalamus resulting in decreased levels of GnRH release.
Cognitive conditions, including memory and attention dysfunctions, as well as depression, are commonly associated with elevated cortisol, and may be early indicators of exogenous or endogenous Cushing's. Depression and anxiety disorders are also common.
Other striking and distressing skin changes that may appear in Cushing's syndrome include facial acne, susceptibility to superficial fungus (dermatophyte and malassezia) infections, and the characteristic purplish, atrophic striae on the abdomen.
Other signs include increased urination (and accompanying increased thirst), persistent high blood pressure (due to cortisol's enhancement of epinephrine's vasoconstrictive effect) and insulin resistance (especially common with ACTH production outside the pituitary), leading to high blood sugar and insulin resistance which can lead to diabetes mellitus. Insulin resistance is accompanied by skin changes such as acanthosis nigricans in the axilla and around the neck, as well as skin tags in the axilla. Untreated Cushing's syndrome can lead to heart disease and increased mortality. Cortisol can also exhibit mineralocorticoid activity in high concentrations, worsening the hypertension and leading to hypokalemia (common in ectopic ACTH secretion). Furthermore, excessive cortisol may lead to gastrointestinal disturbances, opportunistic infections, and impaired wound healing related to cortisol's suppression of the immune and inflammatory responses. Osteoporosis is also an issue in Cushing's syndrome since osteoblast activity is inhibited. Additionally, Cushing's syndrome may cause sore and aching joints, particularly in the hip, shoulders, and lower back. Cushing’s syndrome includes all the causes of increased cortisol leading to the diseased state. Cushing’s disease is a specific type of Cushing’s syndrome caused by a pituitary tumor leading to excessive production of ACTH (adrenocorticotropic hormone). Excessive ACTH stimulates the adrenal cortex to produce high levels of cortisol, producing the disease state. Cushing's disease due to excess ACTH may also result in hyperpigmentation. This is due to Melanocyte-Stimulating Hormone production as a byproduct of ACTH synthesis from Pro-opiomelanocortin (POMC). Alternatively, it is proposed that the high levels of ACTH, β-lipotropin, and γ-lipotropin, which contain weak MSH function, can act on the melanocortin 1 receptor. A variant of Cushing's disease can be caused by ectopic, i.e. extrapituitary, ACTH production from, for example, a small-cell lung cancer. When Cushing's syndrome is caused by an increase of cortisol at the level of the adrenal glands (via an adenoma or hyperplasia), negative feedback ultimately reduces ACTH production in the pituitary. In these cases, ACTH levels remain low and no hyperpigmentation develops. While all Cushing’s disease gives Cushing’s syndrome, not all Cushing’s syndrome is due to Cushing’s disease.
Brain changes such as cerebral atrophy may occur. This atrophy is associated with areas of high glucocorticoid receptor concentrations such as the hippocampus and correlates highly with psychopathological personality changes.
- Rapid weight gain
- Moodiness, irritability, or depression
- Muscle and bone weakness
- Memory and attention dysfunction
- Osteoporosis
- Diabetes mellitus
- Hypertension
- Immune suppression
- Sleep disturbances
- Menstrual disorders such as amenorrhea in women
- Decreased fertility in men
- Hirsutism
- Baldness
- Hypercholesterolemia
Arteritis is the inflammation of the walls of arteries, usually as a result of infection or autoimmune response. Arteritis, a complex disorder, is still not entirely understood. Arteritis may be distinguished by its different types, based on the organ systems affected by the disease. A complication of arteritis is thrombosis, which can be fatal. Arteritis and phlebitis are forms of vasculitis.
Relapsing polychondritis may affect many different organ systems of the body. At first, some people with the disease may have only nonspecific symptoms such as fever, weight loss, and malaise.
Cushing's syndrome is a collection of signs and symptoms due to prolonged exposure to cortisol. Signs and symptoms may include high blood pressure, abdominal obesity but with thin arms and legs, reddish stretch marks, a round red face, a fat lump between the shoulders, weak muscles, weak bones, acne, and fragile skin that heals poorly. Women may have more hair and irregular menstruation. Occasionally there may be changes in mood, headaches, and a chronic feeling of tiredness.
Cushing's syndrome is caused by either excessive cortisol-like medication such as prednisone or a tumor that either produces or results in the production of excessive cortisol by the adrenal glands. Cases due to a pituitary adenoma are known as Cushing's disease. It is the second most common cause of Cushing's syndrome after medication. A number of other tumors may also cause Cushing's. Some of these are associated with inherited disorders such as multiple endocrine neoplasia type 1 and Carney complex. Diagnosis requires a number of steps. The first step is to check the medications a person takes. The second step is to measure levels of cortisol in the urine, saliva or in the blood after taking dexamethasone. If this test is abnormal, the cortisol may be measured late at night. If the cortisol remains high, a blood test for ACTH may be done to determine if the pituitary is involved.
Most cases can be treated and cured. If due to medications, these can often be slowly stopped. If caused by a tumor, it may be treated by a combination of surgery, chemotherapy, and/or radiation. If the pituitary was affected, other medications may be required to replace its lost function. With treatment, life expectancy is usually normal. Some, in whom surgery is unable to remove the entire tumor, have an increased risk of death.
About two to three people per million are affected each year. It most commonly affects people who are 20 to 50 years of age. Women are affected three times more often than men. A mild degree of overproduction of cortisol without obvious symptoms, however, is more common. Cushing's syndrome was first described by Harvey Cushing in 1932. Cushing's syndrome may also occur in other animals including cats, dogs, and horses.