Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Tuberculosis may infect any part of the body, but most commonly occurs in the lungs (known as pulmonary tuberculosis). Extrapulmonary TB occurs when tuberculosis develops outside of the lungs, although extrapulmonary TB may coexist with pulmonary TB.
General signs and symptoms include fever, chills, night sweats, loss of appetite, weight loss, and fatigue. Significant nail clubbing may also occur.
If a tuberculosis infection does become active, it most commonly involves the lungs (in about 90% of cases). Symptoms may include chest pain and a prolonged cough producing sputum. About 25% of people may not have any symptoms (i.e. they remain "asymptomatic"). Occasionally, people may cough up blood in small amounts, and in very rare cases, the infection may erode into the pulmonary artery or a Rasmussen's aneurysm, resulting in massive bleeding. Tuberculosis may become a chronic illness and cause extensive scarring in the upper lobes of the lungs. The upper lung lobes are more frequently affected by tuberculosis than the lower ones. The reason for this difference is not clear. It may be due to either better air flow, or poor lymph drainage within the upper lungs.
Symptoms are similar to tuberculosis (TB), and include fever, fatigue, and weight loss. Pulmonary involvement is similar to TB, while diarrhea and abdominal pain are associated with gastrointestinal involvement.
"Mycobacterium avium-intracellulare" infection (MAI) is an atypical mycobacterial infection, i.e. one with nontuberculous mycobacteria or NTM, caused by "Mycobacterium avium" complex ("MAC"), which is made of three mycobacteria species, "M. avium", "M. intracellulare", and "M. chimaera". This infection causes respiratory illness in birds, pigs, and humans, especially in immunocompromised people. In the later stages of AIDS it can be very severe. It usually first presents as a persistent cough. It is typically treated with a series of three antibiotics for a period of at least six months.
"M. avium", "M. intracellulare", and "M. chimaera" are each saprotrophic organisms present in soil and water; entry into hosts is usually via the gastrointestinal tract, but also can be via the lungs.
MAC infections can cause fevers, diarrhea, malabsorption, as well as loss of appetite and weight loss, and can disseminate to the bone marrow. Therapy for MAI is typically resistant to standard mycobacterial therapies.
Patients with miliary tuberculosis often experience non-specific signs, such as coughing and enlarged lymph nodes. Miliary tuberculosis can also present with enlarged liver (40% of cases), enlarged spleen (15%), inflammation of the pancreas (<5%), and multiple organ dysfunction with adrenal insufficiency (adrenal glands do not produce enough steroid hormones to regulate organ function). Miliary tuberculosis may also present with unilateral or bilateral pneumothorax rarely. Stool may also be diarrheal in nature and appearance.
Other symptoms include fever, hypercalcemia, chorodial tubercles and cutaneous lesions.
Firstly, many patients can experience a fever lasting several weeks with daily spikes in morning temperatures.
Secondly, hypercalcemia prevails in 16 to 51% of tuberculosis cases. It is thought that hypercalcemia occurs as a response to increased macrophage activity in the body. Such that, 1,25 dihydroxycholecalciferol (also referred to as calcitriol) improves the ability of macrophages to kill bacteria; however, higher levels of calcitriol lead to higher calcium levels, and thus hypercalcemia in some cases. Thus, hypercalcemia proves to be an important symptom of miliary tuberculosis.
Thirdly, chorodial tubercules, pale lesions on the optic nerve, typically indicate miliary tuberculosis in children. These lesions may occur in one eye or both; the number of lesions varies between patients. Chorodial tubercules may serve as important symptoms of miliary tuberculosis, since their presence can often confirm suspected diagnosis.
Lastly, between 10 and 30% of adults, and 20–40% of children with miliary tuberculosis have tuberculosis meningitis. This relationship results from myobacteria from miliary tuberculosis spreading to the brain and the subarachnoid space; as a result, leading to tuberculosis meningitis.
The risk factors for contracting miliary tuberculosis are being in direct contact with a person who has it, living in unsanitary conditions, and having an unhealthy diet. In the U.S., risk factors for contracting the disease include homelessness and HIV/AIDS.
A diagnosis of latent tuberculosis (LTB), also called latent tuberculosis infection (LTBI) means a patient is infected with "Mycobacterium tuberculosis", but the patient does not have active tuberculosis. Active tuberculosis can be contagious while latent tuberculosis is not, and it is therefore not possible to get TB from someone with latent tuberculosis. The main risk is that approximately 10% of these patients (5% in the first two years after infection and 0.1% per year thereafter) will go on to develop active tuberculosis. This is particularly true, and there is added risk, in particular situations such as medication that suppresses the immune system or advancing age.
The identification and treatment of people with latent TB is an important part of controlling this disease. Various treatment regimens are in use to treat latent tuberculosis, which generally need to be taken for several months.
Miliary tuberculosis is a form of tuberculosis that is characterized by a wide dissemination into the human body and by the tiny size of the lesions (1–5 mm). Its name comes from a distinctive pattern seen on a chest radiograph of many tiny spots distributed throughout the lung fields with the appearance similar to millet seeds—thus the term "miliary" tuberculosis. Miliary TB may infect any number of organs, including the lungs, liver, and spleen. Miliary tuberculosis is present in about 2% of all reported cases of tuberculosis and accounts for up to 20% of all extra-pulmonary tuberculosis cases.
Extensively drug-resistant tuberculosis (XDR-TB) is a form of tuberculosis caused by bacteria that are resistant to some of the most effective anti-TB drugs. XDR-TB strains have arisen after the mismanagement of individuals with multidrug-resistant TB (MDR-TB).
Almost one in four people in the world is infected with TB bacteria. Only when the bacteria become active do people become ill with TB. Bacteria become active as a result of anything that can reduce the person’s immunity, such as HIV, advancing age, or some medical conditions. TB can usually be treated with a course of four standard, or first-line, anti-TB drugs (i.e., isoniazid, rifampin and any fluoroquinolone). If these drugs are misused or mismanaged, multidrug-resistant TB (MDR-TB) can develop. MDR-TB takes longer to treat with second-line drugs (i.e., amikacin, kanamycin, or capreomycin), which are more expensive and have more side-effects. XDR-TB can develop when these second-line drugs are also misused or mismanaged and therefore also become ineffective.
XDR-TB raises concerns of a future TB epidemic with restricted treatment options, and jeopardizes the major gains made in TB control and progress on reducing TB deaths among people living with HIV/AIDS. It is therefore vital that TB control be managed properly and new tools developed to prevent, treat and diagnose the disease.
The true scale of XDR-TB is unknown as many countries lack the necessary equipment and capacity to accurately diagnose it. It is estimated however that there are around 40,000 cases per year. As of June 2008, 49 countries had confirmed cases of XDR-TB. As of 2017, that number had risen to more than 100.
The co-epidemic of tuberculosis (TB) and human immunodeficiency virus (HIV) is one of the major global health challenges in the present time. The World Health Organization (WHO) reports 9.2 million new cases of TB in 2006 of whom 7.7% were HIV-infected. Tuberculosis is the most common contagious infection in HIV-Immunocompromised patients leading to death. These both diseases become dreadful in combination as HIV declines the human immunity while tuberculosis becomes progressive due to defective immune system.This condition becomes more severe in case of multi-drug (MDRTB) and extensively drug resistant TB (XDRTB), which are difficult to treat and contribute to increased mortality. See Multi-drug-resistant tuberculosis. Tuberculosis can occur at any stage of HIV infection. The risk and severity of tuberculosis increases soon after infection with HIV. A study on gold miners of South Africa revealed that the risk of TB was doubled during the first year after HIV seroconversion. Although tuberculosis can be a relatively early manifestation of HIV infection, it is important to note that the risk of tuberculosis progresses as the CD4 cell count decreases along with the progression of HIV infection. The risk of TB generally remains high in HIV-infected patients above the background risk of the general population even with effective immune reconstitution with ART maintaining high CD4 cell counts.
Multi-drug-resistant tuberculosis (MDR-TB) is a form of tuberculosis (TB) infection caused by bacteria that are resistant to treatment with at least two of the most powerful first-line anti-TB medications (drugs), isoniazid and rifampin. Some forms of TB are also resistant to second-line medications, and are called extensively drug-resistant TB (XDR-TB).
Tuberculosis is caused by infection with the bacteria Mycobacterium tuberculosis. Almost one in four people in the world are infected with TB bacteria. Only when the bacteria become active do people become ill with TB. Bacteria become active as a result of anything that can reduce the person’s immunity, such as HIV, advancing age, diabetes or other immunocompromising illnesses. TB can usually be treated with a course of four standard, or first-line, anti-TB drugs (i.e., isoniazid, rifampin and any fluoroquinolone).
However, beginning with the first antibiotic treatment for TB in 1943, some strains of the TB bacteria developed resistance to the standard drugs through genetic changes (see mechanisms.) Currently the majority of multidrug-resistant cases of TB are due to one strain of TB bacteria called the Beijing lineage. This process accelerates if incorrect or inadequate treatments are used, leading to the development and spread of multidrug-resistant TB (MDR-TB). Incorrect or inadequate treatment may be due to use of the wrong medications, use of only one medication (standard treatment is at least two drugs), not taking medication consistently or for the full treatment period (treatment is required for several months). Treatment of MDR-TB requires second-line drugs (i.e., fluoroquinolones, aminoglycosides, and others), which in general are less effective, more toxic and much more expensive than first-line drugs. Treatment schedules for MDR-TB involving fluoroquinolones and aminoglycosides can run for 2 years, compared to the 6 months of first-line drug treatment, and cost over $100,000 USD.If these second-line drugs are prescribed or taken incorrectly, further resistance can develop leading to XDR-TB.
Resistant strains of TB are already present in the population, so MDR-TB can be directly transmitted from an infected person to an uninfected person. In this case a previously untreated person develops a new case of MDR-TB. This is known as primary MDR-TB, and is responsible for up to 75% of cases. Acquired MDR-TB develops when a person with a non-resistant strain of TB is treated inadequately, resulting in the development of antibiotic resistance in the TB bacteria infecting them. These people can in turn infect other people with MDR-TB.
MDR-TB caused an estimated 480,000 new TB cases and 250,000 deaths in 2015. MDR-TB accounts for 3.3% of all new TB cases worldwide. Resistant forms of TB bacteria, either MDR-TB or rifampin-resistant TB, cause 3.9% of new TB cases and 21% of previously treated TB cases. Globally, most MDR-TB cases occur in South America, Southern Africa, India, China, and the former Soviet Union.
Treatment of MDR-TB requires treatment with second-line drugs, usually four or more anti-TB drugs for a minimum of 6 months, and possibly extending for 18–24 months if rifampin resistance has been identified in the specific strain of TB with which the patient has been infected. Under ideal program conditions, MDR-TB cure rates can approach 70%.
Urogenital tuberculosis may cause strictures of the ureter, which, however, may heal when infection is treated.
Symptoms of XDR-TB are no different from ordinary or drug-susceptible TB: a cough with thick, cloudy mucus (or sputum), sometimes with blood, for more than 2 weeks; fever, chills, and night sweats; fatigue and muscle weakness; weight loss; and in some cases shortness of breath and chest pain. A person with these symptoms does not necessarily have XDR-TB, but they should see a physician for diagnosis and a treatment plan. TB patients whose symptoms do not improve after a few weeks of treatment for TB and are taking treatment should inform their clinician or nurse.
People with infectious pneumonia often have a productive cough, fever accompanied by shaking chills, shortness of breath, sharp or stabbing chest pain during deep breaths, and an increased rate of breathing. In the elderly, confusion may be the most prominent sign.
The typical signs and symptoms in children under five are fever, cough, and fast or difficult breathing. Fever is not very specific, as it occurs in many other common illnesses, may be absent in those with severe disease, malnutrition or in the elderly. In addition, a cough is frequently absent in children less than 2 months old. More severe signs and symptoms in children may include blue-tinged skin, unwillingness to drink, convulsions, ongoing vomiting, extremes of temperature, or a decreased level of consciousness.
Bacterial and viral cases of pneumonia usually present with similar symptoms. Some causes are associated with classic, but non-specific, clinical characteristics. Pneumonia caused by "Legionella" may occur with abdominal pain, diarrhea, or confusion, while pneumonia caused by "Streptococcus pneumoniae" is associated with rusty colored sputum, and pneumonia caused by "Klebsiella" may have bloody sputum often described as "currant jelly". Bloody sputum (known as hemoptysis) may also occur with tuberculosis, Gram-negative pneumonia, and lung abscesses as well as more commonly with acute bronchitis. "Mycoplasma" pneumonia may occur in association with swelling of the lymph nodes in the neck, joint pain, or a middle ear infection. Viral pneumonia presents more commonly with wheezing than does bacterial pneumonia. Pneumonia was historically divided into "typical" and "atypical" based on the belief that the presentation predicted the underlying cause. However, evidence has not supported this distinction, thus it is no longer emphasized.
The infection may affect the kidneys, ureter and bladder and may cause significant damage to each.
Pneumonia can cause respiratory failure by triggering acute respiratory distress syndrome (ARDS), which results from a combination of infection and inflammatory response. The lungs quickly fill with fluid and become stiff. This stiffness, combined with severe difficulties extracting oxygen due to the alveolar fluid, may require long periods of mechanical ventilation for survival.
Sepsis is a potential complication of pneumonia but occurs usually in people with poor immunity or hyposplenism. The organisms most commonly involved are "Streptococcus pneumoniae", "Haemophilus influenzae", and "Klebsiella pneumoniae". Other causes of the symptoms should be considered such as a myocardial infarction or a pulmonary embolism.
Pneumococcal infection is an infection caused by the bacterium "Streptococcus pneumoniae". "S. pneumoniae" is a common member of the bacterial flora colonizing the nose and throat of 5–10% of healthy adults and 20–40% of healthy children. However, it is also the cause of significant disease being a leading cause of pneumonia, bacterial meningitis, and sepsis. The World Health Organization estimate that in 2005 pneumococcal infections were responsible for the death of 1.6 million children worldwide.
Multiple drug resistance (MDR), multidrug resistance or multiresistance is antimicrobial resistance shown by a species of microorganism to multiple antimicrobial drugs. The types most threatening to public health are MDR bacteria that resist multiple antibiotics; other types include MDR viruses, fungi, and parasites (resistant to multiple antifungal, antiviral, and antiparasitic drugs of a wide chemical variety). Recognizing different degrees of MDR, the terms extensively drug resistant (XDR) and pandrug-resistant (PDR) have been introduced. The definitions were published in 2011 in the journal "Clinical Microbiology and Infection" and are openly accessible.
Gram-positive, nonmotile and acid-fast rods (1-3 µm x 0.2-0.4 µm). Sometimes long rods with occasional beaded or swollen cells having non-acid-fast ovoid bodies at one end.
Colony characteristics
- Smooth hemispheric colonies, usually off-white or cream colored. May be butyrous, waxy, multilobate and even rosette clustered (dilute inocula).
- On Malachite green containing media, such as Löwenstein-Jensen media, colonies can absorb the green dye.
Physiology
- Rapid growth on Löwenstein-Jensen media within 2–4 days.
- No growth at 45 °C, but grows on MacConkey agar.
Differential characteristics
- Differentiation from "M. fortuitum subsp. acetamidolyticum" by its ability to use L-glutamate and its inability to use acetamide as simultaneous nitrogen and carbon source. Both subspecies share an identical 5'-16S rDNA sequence. However, the ITS sequences are different.
Mycobacterium fortuitum is a nontuberculous species of the phylum actinobacteria (Gram-positive bacteria with high guanine and cytosine content, one of the dominant phyla of all bacteria), belonging to the genus mycobacterium.
"S. pneumoniae" is responsible for 15–50% of all episodes of community acquired pneumonia, 30–50% of all cases of acute otitis media, and a significant proportion of bloodstream infections and bacterial meningitis.
As estimated by WHO in 2005 it killed about 1.6 million children every year worldwide with 0.7–1 million of them being under the age of five. The majority of these deaths were in developing countries.
A study conducted on 452 patients revealed that the genotype responsible for higher IL-10 expression makes HIV infected people more susceptible to tuberculosis infection. Another study on HIV-TB co-infected patients also concluded that higher level of IL-10 and IL-22 makes TB patient more susceptible to Immune reconstitution inflammatory syndrome (IRIS). It is also seen that HIV co-infection with tuberculosis also reduces concentration of immunopathogenic matrix metalloproteinase (MMPs) leading to reduced inflammatory immunopathology.
Fever and headache are the cardinal features, confusion is a late feature and coma bears a poor prognosis. Meningism is absent in a fifth of patients with TB meningitis. Patients may also have focal neurological deficits.
Lobar pneumonia usually has an acute progression.
Classically, the disease has four stages:
- Congestion in the first 24 hours: This stage is characterized histologically by vascular engorgement, intra-alveolar fluid, small numbers of neutrophils, often numerous bacteria. Grossly, the lung is heavy and hyperemic
- Red hepatization or consolidation: Vascular congestion persists, with extravasation of red cells into alveolar spaces, along with increased numbers of neutrophils and fibrin. The filling of airspaces by the exudate leads to a gross appearance of solidification, or consolidation, of the alveolar parenchyma. This appearance has been likened to that of the liver, hence the term "hepatization".
- Grey hepatization: Red cells disintegrate, with persistence of the neutrophils and fibrin. The alveoli still appear consolidated, but grossly the color is paler and the cut surface is drier.
- Resolution (complete recovery): The exudate is digested by enzymatic activity, and cleared by macrophages or by cough mechanism. Enzymes produced by neutrophils will liquify exudates, and this will either be coughed up in sputum or be drained via lymph.
Once considered rare, its occurrence has increased due to AIDS. It is now the third most common opportunistic infection (after extrapulmonary tuberculosis and cryptococcosis) in HIV-positive individuals within the endemic area of Southeast Asia.
Aspergillosis is an infection caused by the fungus "Aspergillus". Aspergillosis describes a large number of diseases involving both infection and growth of fungus as well as allergic responses. Aspergillosis can occur in a variety of organs, both in humans and animals.
The most common sites of infection are the respiratory apparatus (lungs, sinuses) and these infections can be:
- Invasive (e.g. – IPA)
- Non-invasive (e.g. Allergic Pulmonary Aspergillosis - ABPA)
- Chronic pulmonary and aspergilloma (e.g. chronic cavitary, semi-invasive)
- Severe asthma with fungal sensitisation (SAFS)
Chronic pulmonary aspergillosis (CPA) is a long-term aspergillus infection of the lung and "Aspergillus fumigatus" is almost always the species responsible for this illness. Patients fall into several groups as listed below.
- Those with an aspergilloma which is a ball of fungus found in a single lung cavity - which may improve or disappear, or change very little over a few years.
- Aspergillus nodule
- Chronic cavitary pulmonary aspergillosis (CCPA) where cavities are present in the lungs, but not necessarily with a fungal ball (aspergilloma).
- Chronic fibrosing pulmonary aspergillosis this may develop where pulmonary aspergillosis remains untreated and chronic scarring of the lungs occurs. Unfortunately scarring of the lungs does not improve.
Most patients with CPA have or have had an underlying lung disease. The most common diseases include tuberculosis, atypical mycobacterium infection, stage III fibrocystic pulmonary sarcoidosis, ABPA, lung cancer, COPD and emphysema, asthma and silicosis.