Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Mycobacterium fortuitum is a nontuberculous species of the phylum actinobacteria (Gram-positive bacteria with high guanine and cytosine content, one of the dominant phyla of all bacteria), belonging to the genus mycobacterium.
Gram-positive, nonmotile and acid-fast rods (1-3 µm x 0.2-0.4 µm). Sometimes long rods with occasional beaded or swollen cells having non-acid-fast ovoid bodies at one end.
Colony characteristics
- Smooth hemispheric colonies, usually off-white or cream colored. May be butyrous, waxy, multilobate and even rosette clustered (dilute inocula).
- On Malachite green containing media, such as Löwenstein-Jensen media, colonies can absorb the green dye.
Physiology
- Rapid growth on Löwenstein-Jensen media within 2–4 days.
- No growth at 45 °C, but grows on MacConkey agar.
Differential characteristics
- Differentiation from "M. fortuitum subsp. acetamidolyticum" by its ability to use L-glutamate and its inability to use acetamide as simultaneous nitrogen and carbon source. Both subspecies share an identical 5'-16S rDNA sequence. However, the ITS sequences are different.
Symptoms are similar to tuberculosis (TB), and include fever, fatigue, and weight loss. Pulmonary involvement is similar to TB, while diarrhea and abdominal pain are associated with gastrointestinal involvement.
"Mycobacterium avium-intracellulare" infection (MAI) is an atypical mycobacterial infection, i.e. one with nontuberculous mycobacteria or NTM, caused by "Mycobacterium avium" complex ("MAC"), which is made of three mycobacteria species, "M. avium", "M. intracellulare", and "M. chimaera". This infection causes respiratory illness in birds, pigs, and humans, especially in immunocompromised people. In the later stages of AIDS it can be very severe. It usually first presents as a persistent cough. It is typically treated with a series of three antibiotics for a period of at least six months.
"M. avium", "M. intracellulare", and "M. chimaera" are each saprotrophic organisms present in soil and water; entry into hosts is usually via the gastrointestinal tract, but also can be via the lungs.
MAC infections can cause fevers, diarrhea, malabsorption, as well as loss of appetite and weight loss, and can disseminate to the bone marrow. Therapy for MAI is typically resistant to standard mycobacterial therapies.
Multiple drug resistance (MDR), multidrug resistance or multiresistance is antimicrobial resistance shown by a species of microorganism to multiple antimicrobial drugs. The types most threatening to public health are MDR bacteria that resist multiple antibiotics; other types include MDR viruses, fungi, and parasites (resistant to multiple antifungal, antiviral, and antiparasitic drugs of a wide chemical variety). Recognizing different degrees of MDR, the terms extensively drug resistant (XDR) and pandrug-resistant (PDR) have been introduced. The definitions were published in 2011 in the journal "Clinical Microbiology and Infection" and are openly accessible.
An opportunistic infection is an infection caused by pathogens (bacteria, viruses, fungi, or protozoa) that take advantage of an opportunity not normally available, such as a host with a weakened immune system, an altered microbiota (such as a disrupted gut flora), or breached integumentary barriers. Many of these pathogens do not cause disease in a healthy host that has a normal immune system. However, a compromised immune system, a penetrating injury, or a lack of competition from normal commensals presents an opportunity for the pathogen to infect.
Extensively drug-resistant tuberculosis (XDR-TB) is a form of tuberculosis caused by bacteria that are resistant to some of the most effective anti-TB drugs. XDR-TB strains have arisen after the mismanagement of individuals with multidrug-resistant TB (MDR-TB).
Almost one in four people in the world is infected with TB bacteria. Only when the bacteria become active do people become ill with TB. Bacteria become active as a result of anything that can reduce the person’s immunity, such as HIV, advancing age, or some medical conditions. TB can usually be treated with a course of four standard, or first-line, anti-TB drugs (i.e., isoniazid, rifampin and any fluoroquinolone). If these drugs are misused or mismanaged, multidrug-resistant TB (MDR-TB) can develop. MDR-TB takes longer to treat with second-line drugs (i.e., amikacin, kanamycin, or capreomycin), which are more expensive and have more side-effects. XDR-TB can develop when these second-line drugs are also misused or mismanaged and therefore also become ineffective.
XDR-TB raises concerns of a future TB epidemic with restricted treatment options, and jeopardizes the major gains made in TB control and progress on reducing TB deaths among people living with HIV/AIDS. It is therefore vital that TB control be managed properly and new tools developed to prevent, treat and diagnose the disease.
The true scale of XDR-TB is unknown as many countries lack the necessary equipment and capacity to accurately diagnose it. It is estimated however that there are around 40,000 cases per year. As of June 2008, 49 countries had confirmed cases of XDR-TB. As of 2017, that number had risen to more than 100.
In cattle, the main signs of paratuberculosis are diarrhea and wasting. Most cases are seen in 2- to 6-year-old animals. The initial signs can be subtle, and may be limited to weight loss, decreased milk production, or roughening of the hair coat. The diarrhea is usually thick, without blood, mucus, or epithelial debris, and may be intermittent. Several weeks after the onset of diarrhea, a soft swelling may occur under the jaw. Known as "bottle jaw" or intermandibular edema, this symptom is due to protein loss from the bloodstream into the digestive tract. Paratuberculosis is progressive; affected animals become increasingly emaciated and usually die as the result of dehydration and severe cachexia.
Signs are rarely evident until two or more years after the initial infection, which usually occurs shortly after birth. Animals are most susceptible to the infection in the first year of life. Newborns most often become infected by swallowing small amounts of infected manure from the birthing environment or udder of the mother. In addition, newborns may become infected while in the uterus or by swallowing bacteria passed in milk and colostrum. Animals exposed at an older age, or exposed to a very small dose of bacteria at a young age, are not likely to develop clinical disease until they are much older than two years.
The clinical signs are similar in other ruminants. In sheep and goats, the wool or hair is often damaged and easily shed, and diarrhea is uncommon. In deer, paratuberculosis can progress rapidly. Intestinal disease has also been reported in rabbits and nonhuman primates.
Unlike cattle and sheep, infections in deer often present with clinical illness in animals under one year of age.
Ghon's complex is a lesion seen in the lung that is caused by tuberculosis. The lesions consist of a calcified focus of infection and an associated lymph node. These lesions are particularly common in children and can retain viable bacteria, so are sources of long-term infection and may be involved in reactivation of the disease in later life.
In countries where cow milk infected with "Mycobacterium bovis" has been eliminated (due to culling of infected cows and pasteurization), primary tuberculosis is usually caused by "Mycobacterium tuberculosis" and almost always begins in the lungs. Typically, the inhaled bacilli implant in the distal airspaces of the lower part of the upper lobe or the upper part of the lower lobe, usually close to the pleura. As sensitization develops, a 1- to 1.5-cm area of gray-white inflammation with consolidation emerges, known as the Ghon focus. In most cases, the center of this focus undergoes caseous necrosis. Tubercle bacilli, either free or within phagocytes, drain to the regional nodes, which also often caseate. This combination of parenchymal lung lesion and nodal involvement is referred to as the Ghon complex. During the first few weeks there is also lymphatic and hematogenous dissemination to other parts of the body.
In approximately 95% of cases, development of cell-mediated immunity controls the infection.
The infection in most instances presents as a painless lump just under the skin. In southern Australia, the presentation is more often as a pimple in the skin (dermis) rather than under it. The infection is mostly in the limbs, most often in exposed areas, but not on the hands or feet. In children, all areas may be involved, including the face or abdomen. A more severe form of infection produces diffuse swelling of a limb, which, unlike the papule or nodule, can be painful and accompanied by fever. Infection may frequently follow physical trauma, often minor trauma such as a small scratch.
Patients with miliary tuberculosis often experience non-specific signs, such as coughing and enlarged lymph nodes. Miliary tuberculosis can also present with enlarged liver (40% of cases), enlarged spleen (15%), inflammation of the pancreas (<5%), and multiple organ dysfunction with adrenal insufficiency (adrenal glands do not produce enough steroid hormones to regulate organ function). Miliary tuberculosis may also present with unilateral or bilateral pneumothorax rarely. Stool may also be diarrheal in nature and appearance.
Other symptoms include fever, hypercalcemia, chorodial tubercles and cutaneous lesions.
Firstly, many patients can experience a fever lasting several weeks with daily spikes in morning temperatures.
Secondly, hypercalcemia prevails in 16 to 51% of tuberculosis cases. It is thought that hypercalcemia occurs as a response to increased macrophage activity in the body. Such that, 1,25 dihydroxycholecalciferol (also referred to as calcitriol) improves the ability of macrophages to kill bacteria; however, higher levels of calcitriol lead to higher calcium levels, and thus hypercalcemia in some cases. Thus, hypercalcemia proves to be an important symptom of miliary tuberculosis.
Thirdly, chorodial tubercules, pale lesions on the optic nerve, typically indicate miliary tuberculosis in children. These lesions may occur in one eye or both; the number of lesions varies between patients. Chorodial tubercules may serve as important symptoms of miliary tuberculosis, since their presence can often confirm suspected diagnosis.
Lastly, between 10 and 30% of adults, and 20–40% of children with miliary tuberculosis have tuberculosis meningitis. This relationship results from myobacteria from miliary tuberculosis spreading to the brain and the subarachnoid space; as a result, leading to tuberculosis meningitis.
The risk factors for contracting miliary tuberculosis are being in direct contact with a person who has it, living in unsanitary conditions, and having an unhealthy diet. In the U.S., risk factors for contracting the disease include homelessness and HIV/AIDS.
Multi-drug-resistant tuberculosis (MDR-TB) is a form of tuberculosis (TB) infection caused by bacteria that are resistant to treatment with at least two of the most powerful first-line anti-TB medications (drugs), isoniazid and rifampin. Some forms of TB are also resistant to second-line medications, and are called extensively drug-resistant TB (XDR-TB).
Tuberculosis is caused by infection with the bacteria Mycobacterium tuberculosis. Almost one in four people in the world are infected with TB bacteria. Only when the bacteria become active do people become ill with TB. Bacteria become active as a result of anything that can reduce the person’s immunity, such as HIV, advancing age, diabetes or other immunocompromising illnesses. TB can usually be treated with a course of four standard, or first-line, anti-TB drugs (i.e., isoniazid, rifampin and any fluoroquinolone).
However, beginning with the first antibiotic treatment for TB in 1943, some strains of the TB bacteria developed resistance to the standard drugs through genetic changes (see mechanisms.) Currently the majority of multidrug-resistant cases of TB are due to one strain of TB bacteria called the Beijing lineage. This process accelerates if incorrect or inadequate treatments are used, leading to the development and spread of multidrug-resistant TB (MDR-TB). Incorrect or inadequate treatment may be due to use of the wrong medications, use of only one medication (standard treatment is at least two drugs), not taking medication consistently or for the full treatment period (treatment is required for several months). Treatment of MDR-TB requires second-line drugs (i.e., fluoroquinolones, aminoglycosides, and others), which in general are less effective, more toxic and much more expensive than first-line drugs. Treatment schedules for MDR-TB involving fluoroquinolones and aminoglycosides can run for 2 years, compared to the 6 months of first-line drug treatment, and cost over $100,000 USD.If these second-line drugs are prescribed or taken incorrectly, further resistance can develop leading to XDR-TB.
Resistant strains of TB are already present in the population, so MDR-TB can be directly transmitted from an infected person to an uninfected person. In this case a previously untreated person develops a new case of MDR-TB. This is known as primary MDR-TB, and is responsible for up to 75% of cases. Acquired MDR-TB develops when a person with a non-resistant strain of TB is treated inadequately, resulting in the development of antibiotic resistance in the TB bacteria infecting them. These people can in turn infect other people with MDR-TB.
MDR-TB caused an estimated 480,000 new TB cases and 250,000 deaths in 2015. MDR-TB accounts for 3.3% of all new TB cases worldwide. Resistant forms of TB bacteria, either MDR-TB or rifampin-resistant TB, cause 3.9% of new TB cases and 21% of previously treated TB cases. Globally, most MDR-TB cases occur in South America, Southern Africa, India, China, and the former Soviet Union.
Treatment of MDR-TB requires treatment with second-line drugs, usually four or more anti-TB drugs for a minimum of 6 months, and possibly extending for 18–24 months if rifampin resistance has been identified in the specific strain of TB with which the patient has been infected. Under ideal program conditions, MDR-TB cure rates can approach 70%.
Immunodeficiency or immunosuppression can be caused by:
- Malnutrition
- Fatigue
- Recurrent infections
- Immunosuppressing agents for organ transplant recipients
- Advanced HIV infection
- Chemotherapy for cancer
- Genetic predisposition
- Skin damage
- Antibiotic treatment leading to disruption of the physiological microbiome, thus allowing some microorganisms to outcompete others and become pathogenic (e.g. disruption of intestinal flora may lead to "Clostridium difficile" infection
- Medical procedures
- Pregnancy
- Ageing
- Leukopenia (i.e. neutropenia and lymphocytopenia)
The lack of or the disruption of normal vaginal flora allows the proliferation of opportunistic microorganisms and will cause the opportunistic infection - bacterial vaginosis.
Miliary tuberculosis is a form of tuberculosis that is characterized by a wide dissemination into the human body and by the tiny size of the lesions (1–5 mm). Its name comes from a distinctive pattern seen on a chest radiograph of many tiny spots distributed throughout the lung fields with the appearance similar to millet seeds—thus the term "miliary" tuberculosis. Miliary TB may infect any number of organs, including the lungs, liver, and spleen. Miliary tuberculosis is present in about 2% of all reported cases of tuberculosis and accounts for up to 20% of all extra-pulmonary tuberculosis cases.
Paratuberculosis or Johne's disease is a contagious, chronic and sometimes fatal infection that primarily affects the small intestine of ruminants. It is caused by the bacterium "Mycobacterium avium" subspecies "paratuberculosis". Infections normally affect ruminants (mammals that have four compartments of their stomachs, of which the rumen is one), but have also been seen in a variety of nonruminant species, including rabbits, foxes, and birds. Horses, dogs, and nonhuman primates have been infected experimentally. Paratuberculosis is found worldwide, with some states in Australia (where it is usually called bovine Johne's disease or BJD) as the only areas proven to be free of the disease.
Some sources define "paratuberculosis" by the lack of "Mycobacterium tuberculosis", rather than the presence of any specific infectious agent, leaving ambiguous the appropriateness of the term to describe Buruli ulcer or Lady Windermere syndrome.
Because the TVC's entry point usually is the site of a trauma, wound or puncture in the skin (during an autopsy, for example), the most frequent site for the wart are the hands. But it can occur anywhere in the skin, such as in the sole of the feet, in the anus, and, in the case of children from developing countries, in the buttocks and knees. This is because children from countries of high incidence of tuberculosis can contract the lesion after contact with tuberculous sputum, by walking barefoot, sitting or playing on the ground.
When recent, the skin lesion has the outside appearance of a wart or verruca, thus it can be confused with other kinds of warts. It evolves to an annular red-brown plaque with time, with central healing and gradual expansion in the periphery. In this phase, it can be confused with fungal infections such as blastomycosis and chromoblastomycosis.
Common multidrug-resistant organisms are usually bacteria:
- Vancomycin-Resistant Enterococci (VRE)
- Methicillin-Resistant "Staphylococcus" "aureus" (MRSA)
- Extended-spectrum β-lactamase (ESBLs) producing Gram-negative bacteria
- "Klebsiella" "pneumoniae" carbapenemase (KPC) producing Gram-negatives
- Multidrug-Resistant gram negative rods (MDR GNR) MDRGN bacteria such as "Enterobacter species", "E.coli", "Klebsiella pneumoniae", "Acinetobacter baumannii", "Pseudomonas aeruginosa"
A group of gram-positive and gram-negative bacteria of particular recent importance have been dubbed as the ESKAPE group ("Enterococcus faecium", "Staphylococcus aureus", "Klebsiella pneumoniae", "Acinetobacter baumannii", "Pseudomonas aeruginosa" and Enterobacter species).
- Multi-drug-resistant tuberculosis
A Ghon focus is a primary lesion usually subpleural, often in the mid to lower zones, caused by "Mycobacterium bacilli" (tuberculosis) developed in the lung of a nonimmune host (usually a child). It is named for Anton Ghon (1866–1936), an Austrian pathologist.
It is a small area of granulomatous inflammation, only detectable by chest X-ray if it calcifies or grows substantially (see tuberculosis radiology). Typically these will heal, but in some cases, especially in immunosuppressed patients, it will progress to miliary tuberculosis (so named due to the granulomas resembling millet seeds on a chest X-ray).
The classical location for primary infection is surrounding the lobar fissures, either in the upper part of the lower lobe or lower part of the upper lobe.
If the Ghon focus also involves infection of adjacent lymphatics and hilar lymph nodes, it is known as the Ghon's complex or primary complex. When a Ghon's complex undergoes fibrosis and calcification it is called a Ranke complex.
Successful diagnosis of XDR-TB depends on the patient’s access to quality health-care services. If TB bacteria are found in the sputum, the diagnosis of TB can be made in a day or two, but this finding will not be able to distinguish between drug-susceptible and drug-resistant TB. To evaluate drug susceptibility, the bacteria need to be cultivated and tested in a suitable laboratory. Final diagnosis in this way for TB, and especially for XDR-TB, may take from 6 to 16 weeks. To reduce the time needed for diagnosis, new tools for rapid TB diagnosis are urgently needed.
The original method used to test for MDR-TB and XDR-TB was the Drug Susceptibility Testing (DST). DST is capable of determining how well four primary antitubercular drugs inhibit the growth of Mycobacterium Tuberculosis. The four primary antitubercular drugs are Isoniazid, Rifampin, Ethambutol and Pyrazinamide. Drug Susceptibility testing is done by making a Lowenstein-Jensen medium plate and spreading the bacteria on the plate. Disks containing one of the four primary drugs are added to the plate. After weeks of allowing the bacteria to grow the plate is checked for clear areas around the disk. If there is a clear area, the drug has killed the bacteria and most likely the bacteria is not resistant to that drug.
As "Mycobacterium tuberculosis" evolved new strains of resistant bacteria were being found such as XDR-TB. The problem was that primary DST was not suitable for testing bacteria strains that were extensively drug resistant. This problem was starting to be fixed when drug susceptibility tests started including not just the four primary drugs, but secondary drugs. This secondary test is known as Bactec MGIT 960 System. Although Bactec MGIT 960 System was accurate it was still slow at determining the level of resistance.
Diagnosis of MDR and XDR-TB in children is challenging. With an increasing number of cases being reported worldwide there is a great need for better diagnostic tools available for pediatric patients.
In recent years drug resistant tuberculosis testing has shown a lot of progress. Some studies have found an in-house assay that could rapidly detect resistance to drugs involved in the definition of XDR-TB directly from smear-positive specimens. The assay is called Reverse Line Blot Hybridization Assay also known as RLBH. The study showed that the results of RLBH were as accurate as other drug susceptibility tests, but at the same time didn`t take weeks to get results. RLBH testing only took 3 days to determine how resistant the strain of bacteria was.
The current research has shown progress in the testing of drug resistance. A recent study found that a research technique known as direct nitrate reductase assay (D-NRA) showed efficient accuracy for the rapid and simultaneous detection of resistance to isoniazid (INH), rifampicin (RIF), kanamycin (KAN) and ofloxacin (OFL). D-NRA results were obtained in 16.9 days, comparably less than other drug susceptibility testing. At the same time the study mentioned how D-NRA is a low-cost technology, easy to set up in clinical laboratories and suitable to be used for DST of M. tuberculosis in all smear-positive samples.
Tuberculosis verrucosa cutis (also known as "lupus verrucosus", "prosector's wart", and "warty tuberculosis") is a rash of small, red papular nodules in the skin that may appear 2–4 weeks after inoculation by "Mycobacterium tuberculosis" in a previously infected and immunocompetent individual.
It is so called because it was a common occupational disease of prosectors, the preparers of dissections and autopsies. Reinfection by tuberculosis via the skin, therefore, can result from accidental exposure to human tuberculous tissue in physicians, pathologists and laboratory workers; or to tissues of other infected animals, in veterinarians, butchers, etc. Other names given to this form of skin tuberculosis are anatomist's wart and verruca necrogenica (literally, generated by corpses).
TVC is one of the many forms of cutaneous tuberculosis, such as the tuberculous chancre (which results from the inoculation in people without immunity), and the reactivation cutaneous tuberculosis (the most common form, which appears in previously infected patients). Other forms of cutaneous tuberculosis are: lupus vulgaris, scrofuloderma, lichen scrofulosorum, erythema induratum and the papulonecrotic tuberculid.
It was described by René Laennec in 1826.
Tuberculosis may infect any part of the body, but most commonly occurs in the lungs (known as pulmonary tuberculosis). Extrapulmonary TB occurs when tuberculosis develops outside of the lungs, although extrapulmonary TB may coexist with pulmonary TB.
General signs and symptoms include fever, chills, night sweats, loss of appetite, weight loss, and fatigue. Significant nail clubbing may also occur.
The Ghon complex undergoes progressive fibrosis, often followed by radiologically detectable calcification (Ranke complex), and despite seeding of other organs, no lesions develop. Although they are often confused, Ranke complex and Ghon complex are not synonymous. The Ranke complex is an evolution of the Ghon complex (resulting from further healing and calcification of the lesion).
The Ghon complex is named after Austrian pathologist Anton Ghon; the Ranke complex is named in honour of German pulmonologist Karl Ernst Ranke.
Buruli ulcer is an infectious disease caused by "Mycobacterium ulcerans". The early stage of the infection is characterised by a painless nodule or area of swelling. This nodule can turn into an ulcer. The ulcer may be larger inside than at the surface of the skin, and can be surrounded by swelling. As the disease worsens, bone can be infected. Buruli ulcers most commonly affect the arms or legs; fever is uncommon.
"M. ulcerans" releases a toxin known as mycolactone, which decreases immune system function and results in tissue death. Bacteria from the same family also cause tuberculosis and leprosy ("M. tuberculosis" and "M. leprae", respectively). How the disease is spread is not known. Sources of water may be involved in the spread. As of 2013 there is no effective vaccine.
If people are treated early, antibiotics for eight weeks are effective in 80%. The treatment often includes the medications rifampicin and streptomycin. Clarithromycin or moxifloxacin are sometimes used instead of streptomycin. Other treatments may include cutting out the ulcer. After the infection heals, the area typically has a scar.
In 2015 about 2,000 cases were reported. Buruli ulcers occur most commonly in rural sub-Saharan Africa especially Cote d'Ivoire, but can also occur in Asia, the Western Pacific and the Americas. Children are most commonly infected. Cases have occurred in more than 32 countries. The disease also occurs in a number of animals other than humans. Albert Ruskin Cook was the first to describe buruli ulcers in 1897. It is classified as a neglected tropical disease.
If a tuberculosis infection does become active, it most commonly involves the lungs (in about 90% of cases). Symptoms may include chest pain and a prolonged cough producing sputum. About 25% of people may not have any symptoms (i.e. they remain "asymptomatic"). Occasionally, people may cough up blood in small amounts, and in very rare cases, the infection may erode into the pulmonary artery or a Rasmussen's aneurysm, resulting in massive bleeding. Tuberculosis may become a chronic illness and cause extensive scarring in the upper lobes of the lungs. The upper lung lobes are more frequently affected by tuberculosis than the lower ones. The reason for this difference is not clear. It may be due to either better air flow, or poor lymph drainage within the upper lungs.
A subclinical infection (sometimes called a preinfection) is an infection that, being , is nearly or completely asymptomatic (no signs or symptoms). A subclinically infected person is thus an asymptomatic carrier of a microbe, intestinal parasite, or virus that usually is a pathogen causing illness, at least in some individuals. Many pathogens spread by being silently carried in this way by some of their host population. Such infections occur both in humans and nonhuman animals. An example of an asymptomatic infection is a mild common cold that is not noticed by the infected individual. Since subclinical infections often occur without eventual overt sign, their existence is only identified by microbiological culture or DNA techniques such as polymerase chain reaction.