Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
During puberty, changes in the larynx typically result in a decrease in pitch in both males and females. On average, the male voice deepens by one octave while the female voice lowers by a few semitones. The fundamental frequency (pitch) of an adult female typically falls between 165 and 255 Hz and an adult male between 85 and 180 Hz. Anatomical changes during puberty include enlargement of the larynx for both sexes. However, the larynx descends and grows significantly larger in males which often results in a visible laryngeal prominence on the neck (Adam’s Apple). Additionally, male vocal folds become longer and thicker and resonant cavities become larger. These changes contribute to a deepening of the voice characteristic of pubescent males.
Puberphonia is characterized by the failure to transition into the lower pitched voice of adulthood. In conjunction with an atypically high pitch, common symptoms include a weak, breathy, or hoarse voice as well as a low vocal intensity, pitch breaks, and shallow breathing.
Puberphonia (also known as mutational falsetto or functional falsetto) is a type of voice disorder characterized by the habitual use of a high-pitched voice after puberty. Typically, individuals with puberphonia do not present with underlying anatomical abnormalities. Instead, the disorder is usually psychogenic in nature and stems from inappropriate use of the voice mechanism. The habitual use of a high pitch while speaking is associated with tense muscles surrounding the vocal folds.
Assessment and treatment of puberphonia is usually conducted by a speech-language pathologist (S-LP). Treatment can involve direct voice therapy, indirect voice therapy, or audiovisual feedback. In some cases when traditional voice therapy is ineffective, surgical interventions are considered.
Approximately 100 cases have been described in the literature to date.
The facial features are characteristic and include
- Deep set eyes
- Strabismus
- Myopia
- Marked nasal root
- Broad and/or beaked nasal bridge
- Prominent Cupid's bow
- Everted lower lip
- Tented upper lip
- Large mouth
- Widely spaced teeth
- Wide and shallow palate
- Ears with thick and overfolded helix
Most have a smiling appearance.
Intellectual disability is severe. Language is absent or limited to only a few words. Stereotypic movements particularly of the arms, wrists and fingers is almost universal. Hypotonia is common (75%) as is an unsteady gait. All have delayed walking. Other features include a single (simian) palmar crease, long, slender fingers, flat feet and cryptorchidism (in males). Finger clubbing and the presence of fetal pads is common. Hyperventilation occurs in over half and is frequently followed by apnea and cyanosis. During these episodes aerophagia may occur. Constipation is common. Microcephaly and seizures may occur. Hypopigmented skin macules have occasionally been reported.
Symptoms typically are onset in the adult years, although, childhood cases have also been observed. Common symptoms include a loss of coordination which is often seen in walking, and slurred speech. ADCA primarily affects the cerebellum, as well as, the spinal cord. Some signs and symptoms are:
Pitt–Hopkins syndrome is a rare genetic disorder characterized by developmental delay, a wide mouth, distinctive facial features, and intermittent hyperventilation followed by apnea. It is associated with an abnormality within chromosome 18: specifically, it is caused by an insufficient expression of the TCF4 gene.
Hemimegalencephaly is an extremely rare form of macrocephaly and is characterized by uneven development of brain hemispheres (one-half of brain is larger than other). The syndrome can be presented by itself or in association with phakomatosis or hemigigantism. Additionally, hemimegalencephaly will frequently cause severe epilepsy, focal neuro-logical deficits, macrocrania, and mild to severe mental retardation.
Megalencephaly-capillary (MCAP) is one of the two major syndromes of megalencephaly. Typically, MCAP and MPPH can be distinguished by somatic features. MCAP includes many characteristics that are observed at birth including: cutaneous vascular malformations, especially capillary malformations of the face and cutis marmorata, polydactyly, connective tissue dysplasia, and focal or segmental body overgrowth. Furthermore, MCAP can occasionally be linked with asymmetric brain overgrowth (hemimegalencephaly) as well as segmental overgrowth of the body (hemihypertrophy).
Autosomal dominant cerebellar ataxia (ADCA) is a form of spinocerebellar ataxia inherited in an autosomal dominant manner. ADCA is a genetically inherited condition that causes deterioration of the nervous system leading to disorder and a decrease or loss of function to regions of the body.
Degeneration occurs at the cellular level and in certain subtypes results in cellular death. Cellular death or dysfunction causes a break or faulty signal in the line of communication from the central nervous system to target muscles in the body. When there is impaired communication or a lack of communication entirely, the muscles in the body do not function correctly. Muscle control complications can be observed in multiple balance, speech, and motor or movement impairment symptoms. ADCA is divided into three types and further subdivided into subtypes known as SCAs (spinocerebellar ataxias).
Patients usually begin to notice symptoms in their 50s and the course is usually slowly progressive. Common features include peripheral neuropathy, cardiomyopathy, and hemolytic anemia. Other features include limb chorea, facial tics, other oral movements (lip and tongue biting), seizures, a late-onset dementia, and behavioral changes.
McLeod syndrome (or McLeod phenomenon; ) is an X-linked recessive genetic disorder that may affect the blood, brain, peripheral nerves, muscle, and heart. It is caused by a variety of recessively inherited mutations in the XK gene on the X chromosome. The gene is responsible for producing the Kx protein, a secondary supportive protein for the Kell antigen on the red blood cell surface.
OA1 is recognized by many different symptoms. Reduced visual acuity is accompanied by involuntary movements of the eye termed as nystagmus. Astigmatism is a condition wherein there occurs significant refractive error. Moreover, ocular albino eyes become crossed, a condition called as ‘lazy eyes’ or strabismus. Since very little pigment is present the iris becomes translucent and reflects light back. It appears green to blueish red. However, the most important part of the eye, the fovea which is responsible for acute vision, does not develop properly, probably indicating the role of melanin in the development stages of the eye. Some affected individuals may also develop photophobia/photodysphoria. All these symptoms are due to lack of pigmentation of the retina. Moreover, in an ocular albino eye, nerves from back of the eye to the brain may not follow the usual pattern of routing. In an ocular albino eye, more nerves cross from back of the eye to the opposite side of the brain instead of going to the both sides of the brain as in a normal eye. An ocular albino eye appears blueish pink in color with no pigmentation at all unlike a normal eye. Carrier women have regions of hypo- and hyper-pigmentation due to X-inactivation and partial iris transillumination and do not show any other symptoms exhibited by those affected by OA1.
Ferner et al. give three sets of diagnostic criteria for NF2:
1. Bilateral vestibular schwannoma (VS) or family history of NF2 plus Unilateral VS or any two of: meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
2. Unilateral VS plus any two of meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
3. Two or more meningioma plus unilateral VS or any two of glioma, schwannoma and cataract.
Another set of diagnostic criteria is the following:
- Detection of bilateral acoustic neuroma by imaging-procedures
- First degree relative with NF II and the occurrence of neurofibroma, meningiomas, glioma, or Schwannoma
- First degree relative with NF II and the occurrence of juvenile posterior subcapsular cataract.
The criteria have varied over time.
Neurofibromatosis type II (also known as MISME syndrome - multiple inherited schwannomas, meningiomas, and ependymomas) is a genetic condition which may be inherited or may arise spontaneously. The main manifestation of the condition is the development of symmetric, benign brain tumors in the region of the cranial nerve VIII, which is the "auditory-vestibular nerve" that transmits sensory information from the inner ear to the brain. Many people with this condition also experience visual problems. NF II is caused by mutations of the "Merlin" gene, which seems to influence the form and movement of cells. The principal treatments consist of neurosurgical removal of the tumors and surgical treatment of the eye lesions. Historically the underlying disorder has not had any therapy due to the cell function caused by the genetic mutation. However, new drug research and some clinical trials have shown some promise in having beneficial effects. Collaborative research to find better treatments is ongoing, such as the work of the Synodos NF-2 Consortium of scientists.
Ocular albinism type 1 (OA1), also called Nettleship–Falls syndrome, is the most common type of ocular albinism, with a prevalence rate of 1:50,000. It is an inheritable classical Mendelian type X-linked recessive disorder wherein the retinal pigment epithelium lacks pigment while hair and skin appear normal. Since it is usually an X-linked disorder, it occurs mostly in males, while females are carriers unless they are homozygous. About 60 missense and nonsense mutations, insertions, and deletions have been identified in "Oa1". Mutations in OA1 have been linked to defective glycosylation and thus improper intracellular transportation.
The eponyms of the name "Nettleship–Falls syndrome" are the ophthalmologists Edward Nettleship and Harold Francis Falls.
Diagnosis of Molybdenum cofactor deficiency includes early seizures, low blood levels of uric acid, and high levels of sulphite, xanthine, and uric acid in urine. Additionally, the disease produces characteristic MRI images that can aid in diagnosis.
Trichothiodystrophy (TTD) is an autosomal recessive inherited disorder characterised by brittle hair and intellectual impairment. The word breaks down into "tricho" – "hair", "thio" – "sulphur", and "dystrophy" – "wasting away" or literally "bad nourishment". TTD is associated with a range of symptoms connected with organs of the ectoderm and neuroectoderm. TTD may be subclassified into four syndromes: Approximately half of all patients with trichothiodystrophy have photosensitivity, which divides the classification into syndromes with or without photosensitivity; BIDS and PBIDS, and IBIDS and PIBIDS. Modern covering usage is TTD-P (photosensitive), and TTD.
When caused by a mutation in the MOCS1 gene it is the type A variant. It can also be caused by a mutation in the MOCS2 gene or the GEPH gene. As of 2010, there had been approximately 132 reported cases.
It should not be confused with molybdenum deficiency.
Features of TTD can include photosensitivity, icthyosis, brittle hair and nails, intellectual impairment, decreased fertility and short stature. The acronyms PIBIDS, IBIDS, BIDS and PBIDS give the initials of the words involved. BIDS syndrome, also called Amish brittle hair brain syndrome and hair-brain syndrome, is an autosomal recessive inherited disease. It is nonphotosensitive. BIDS is characterized by brittle hair, intellectual impairment, decreased fertility, and short stature. There is a photosensitive syndrome, PBIDS.
BIDS is associated with the gene MPLKIP (TTDN1).
IBIDS syndrome, following the acronym from ichthyosis, brittle hair and nails, intellectual impairment and short stature, is the Tay syndrome or sulfur-deficient brittle hair syndrome, first described by Tay in 1971. (Chong Hai Tay was the Singaporean doctor who was the first doctor in South East Asia to have a disease named after him). Tay syndrome should not be confused with the Tay-Sachs disease. It is an autosomal recessive congenital disease. In some cases, it can be diagnosed prenatally. IBIDS syndrome is nonphotosensitive.
The photosensitive form is referred to as PIBIDS, and is associated with ERCC2 and ERCC3.
There are two types of SGBS, each found on a different gene:
SGBS is also considered to be an overgrowth syndrome (OGS). OGS is characterized by a 2-3 standard deviation increase in weight, height, or head circumference above the average for sex and age. One of the most noted features of OGS is the increased risk of neoplasms in certain OGSs. SGBS in particular has been found to have a 10% tumor predisposition frequency with 94% of cases occurring in the abdominal region, most being malignant. It is common for tumors to be embryonal in type and appear before the age of 10.
There are five different types of tumors that patients with SGBS might develop, all intra-abdominal: Wilms tumor, Hepatoblastoma, Hepatocarcinoma, Gonadoblastoma, and Neuroblastoma.
The most common types of tumors developed in patients are the Wilms tumor and hepatoblastoma.
The average age of onset is the early to mid 30s. Exertional dyspnea and spontaneous pneumothorax have been reported as the initial presentation of the disease in 49% and 46% of patients, respectively.
Diagnosis is typically delayed 5 to 6 years. The condition is often misdiagnosed as asthma or chronic obstructive pulmonary disease. The first pneumothorax precedes the diagnosis of LAM in 82% of patients. The consensus clinical definition of LAM includes multiple symptoms:
- Fatigue
- Cough
- Hemoptysis (rarely massive)
- Chest pain
- Chylous complications arising from lymphatic obstruction, including
- Chylothorax
- Chylous ascites
- Chylopericaridium
- Chyloptysis
- Chyluria
- Chyle in vaginal discharge
- Chyle in stool.
- Angiomyolipomas (fatty kidney tumors) are present in about 30% of patients with sporadic LAM and up to 90% of patients with TSC-LAM. Angiomyolipomas can sometimes spontaneously bleed, causing pain or hypotension.
- Cystic lymphangiomas or lymph nodes with hypodense centers, which mimic necrotizing lymphomas, ovarian or renal cancers, or other malignancies can occur in the retroperitoneum, pelvis or mediastinum.
Lung destruction in LAM is a consequence of diffuse infiltration by neoplastic smooth muscle-like cells that invade all lung structures including the lymphatics, airway walls, blood vessels and interstitial spaces. The consequences of vessel and airway obstruction include chylous fluid accumulations, hemoptysis, airflow obstruction and pneumothorax. The typical disease course displays progressive dyspnea on exertion, spaced by recurrent pneumothoraces and in some patients, chylous pleural effusions or ascites.
Most people have dyspnea on exertion with daily activities by 10 years after symptom onset. Many patients require supplemental oxygen over that interval.
Symptoms generally begin around puberty but can occur earlier. These individuals have recurrent swelling in the extremities, genitals, face, lips, larynx or GI tract. Some patients describe a sensation of fullness but not pain or itching in the affected area except for those with abdominal swellings who often experience acute abdominal pain. Others experience an intense amount of pain, described as radiating from the bone outward along with intense itching just beneath the skin and intense heat, regardless of the area targeted.
Instances of swelling around the throat or larynx can cause difficulties in breathing should the swelling obstruct airways. This has been known to cause a large number of fatalities in those afflicted with the disorder. Episodes that attack the gastrointestinal tract can cause a number of complications including dehydration from being unable to keep anything down (which, depending on length of the episode, can prove fatal). Symptoms from gI tract swelling including violent vomiting, intense pain from the midsection, dehydration, and intense exhaustion.
Some suffered of HAE suffer from 'wandering' attacks. These attacks will center around an extremity. For example: Should the sufferer's hand swell up, it will go through the normal swelling cycle before 'transferring' to either the connection limb (In this case wrist to forearm) or move to the opposite hand. Sufferers with this symptom may find their episodes last longer, and may find their triggers more difficult to track.
Throat cancer usually begins with symptoms that seem harmless enough, like an enlarged lymph node on the outside of the neck, a sore throat or a hoarse sounding voice. However, in the case of throat cancer, these conditions may persist and become chronic. There may be a lump or a sore in the throat or neck that does not heal or go away. There may be difficult or painful swallowing. Speaking may become difficult. There may be a persistent earache. Other possible but less common symptoms include some numbness or paralysis of the face muscles.
Presenting symptoms include :
- Mass in the neck
- Neck pain
- Bleeding from the mouth
- Sinus congestion, especially with nasopharyngeal carcinoma
- Bad breath
- Sore tongue
- Painless ulcer or sores in the mouth that do not heal
- White, red or dark patches in the mouth that will not go away
- Earache
- Unusual bleeding or numbness in the mouth
- Lump in the lip, mouth or gums
- Enlarged lymph glands in the neck
- Slurring of speech (if the cancer is affecting the tongue)
- Hoarse voice which persists for more than six weeks
- Sore throat which persists for more than six weeks
- Difficulty swallowing food
- Change in diet or weight loss
Type 1 vWD (60-80% of all vWD cases) is a quantitative defect which is heterozygous for the defective gene. It can arise from failure to secrete vWF into the circulation or from vWF being cleared more quickly than normal. Decreased levels of vWF are detected at 20-50% of normal, i.e. 20-50 IU.
Many patients are asymptomatic or may have mild symptoms and not have clearly impaired clotting, which might suggest a bleeding disorder. Often, the discovery of vWD occurs incidentally to other medical procedures requiring a blood work-up. Most cases of type 1 vWD are never diagnosed due to the asymptomatic or mild presentation of type I and most people usually end up leading a normal life free of complications, with many being unaware that they have the disorder.
Trouble may, however, arise in some patients in the form of bleeding following surgery (including dental procedures), noticeable easy bruising, or menorrhagia (heavy menstrual periods). The minority of cases of type 1 may present with severe hemorrhagic symptoms.
Type 2 vWD (15-30% of cases) is a qualitative defect and the bleeding tendency can vary between individuals. Four subtypes exist: 2A, 2B, 2M, and 2N. These subtypes depend on the presence and behavior of the underlying multimers.
Simpson–Golabi–Behmel syndrome (SGBS), also called Bulldog syndrome, Sara Agers syndrome, Golabi–Rosen syndrome, Simpson dysmorphia syndrome (SDYS) or X-linked dysplasia gigantism syndrome (DGSX), is a rare inherited congenital disorder that can cause craniofacial, skeletal, cardiac, and renal abnormalities.
The syndrome is inherited in an X-linked recessive fashion, where males express the phenotype and females usually do not. Females that possess one copy of the mutation are considered to be carriers of the syndrome and may express varying degrees of the phenotype.