Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Muscle weakness can also be classified as either "proximal" or "distal" based on the location of the muscles that it affects. Proximal muscle weakness affects muscles closest to the body's midline, while distal muscle weakness affects muscles further out on the limbs.
Proximal muscle weakness can be seen in Cushing's syndrome and hyperthyroidism.
Asthenia (Greek: "ἀσθένεια", lit "lack of strength" but also "disease") is a medical term referring to a condition in which the body lacks or has lost strength either as a whole or in any of its parts. It denotes symptoms of physical weakness and loss of strength. General asthenia occurs in many chronic wasting diseases (such as tuberculosis and cancer), sleep disorders or chronic disorders of the heart, lungs or kidneys, and is probably most marked in diseases of the adrenal gland. Asthenia may be limited to certain organs or systems of organs, as in asthenopia, characterized by ready fatiguability. Asthenia is also a side effect of some medications and treatments, such as Ritonavir (a protease inhibitor used in HIV treatment), vaccines such as the HPV vaccine Gardasil and fentanyl patches (an opioid used to treat pain).
Differentiating psychogenic (perceived) asthenia and true asthenia from myasthenia is often difficult, and in time apparent psychogenic asthenia accompanying many chronic disorders is seen to progress into a primary weakness.
Myasthenia (my- from Greek μυο meaning "muscle" + -asthenia ἀσθένεια meaning "weakness"), or simply muscle weakness, is a lack of muscle strength. The causes are many and can be divided into conditions that have either true or perceived muscle weakness. True muscle weakness is a primary symptom of a variety of skeletal muscle diseases, including muscular dystrophy and inflammatory myopathy. It occurs in neuromuscular diseases, such as myasthenia gravis.
Muscle fatigue can be central, neuromuscular, or peripheral muscular. Central muscle fatigue manifests as an overall sense of energy deprivation, and peripheral muscle weakness manifests as a local, muscle-specific inability to do work. Neuromuscular fatigue can be either central or peripheral.
The severity of muscle weakness can be classified into different "grades" based on the following criteria:
- Grade 0: No contraction or muscle movement.
- Grade 1: Trace of contraction, but no movement at the joint.
- Grade 2: Movement at the joint with gravity eliminated.
- Grade 3: Movement against gravity, but not against added resistance.
- Grade 4: Movement against external resistance with less strength than usual.
- Grade 5: Normal strength.
Patients with acquired non-inflammatory myopathy typically experience weakness, cramping, stiffness, and tetany, most commonly in skeletal muscle surrounding the limbs and upper shoulder girdle.
The most commonly reported symptoms are:
- Muscle fatigue
- Pain
- Muscle spasms and cramps
- Tingling
- Numbness
- Tetany
- Loss of coordination and balance
- Lack of fine and gross motor control
- Muscular wasting and atrophy
The main symptom of benign fasciculation syndrome is focal or widespread involuntary muscle activity (twitching), which can occur at random or specific times (or places). Presenting symptoms of benign fasciculation syndrome may include:
- Fasciculations (primary symptom)
- Blepharospasms (eye spasms)
- Generalized fatigue
- Muscle pain
- Anxiety (which can also be a cause)
- Exercise intolerance
- Globus sensation
- Paraesthesias
- Muscle cramping or spasms
Other symptoms include:
- Hyperreflexia
- Muscle stiffness
- Tremors
- Itching
- Myoclonic jerks
BFS symptoms are typically present when the muscle is at rest and are not accompanied by severe muscle weakness. In some BFS cases, fasciculations can jump from one part of the body to another. For example, it could start in a leg muscle, then in a few seconds jump to the forehead, then the abdomen, etc. Because fasciculations can occur on the head, this strongly suggests the brain as the generator due to its exclusive non-dependence on the spinal cord. (Together, the brain and spinal cord comprise the central nervous system.)
Anxiety is often caused as a result of BFS, and a lot of sufferers have hypochondria as BFS mimics symptoms of much more serious diseases such as amyotrophic lateral sclerosis (ALS).
Common symptoms include muscle weakness, cramps, stiffness, and tetany.
Classic symptoms of muscle imbalances are usually pain associated with the affected joint. Symptoms can vary depending on what stage their muscular imbalance is, functional or pathological, but commonly exhibit small tissue damage or lesions accompanied by a change in muscle movement patterns. Symptoms may occur after injury or surgery, where the recuperation of the joint affected is left untreated causing either tension or restriction to flexibility and strength of the prime movers.
Acquired non-inflammatory myopathy (ANIM) is a neurological disorder primarily affecting skeletal muscle, most commonly in the limbs of humans, resulting in a weakness or dysfunction in the muscle. A myopathy refers to a problem or abnormality with the myofibrils, which compose muscle tissue. In general, non-inflammatory myopathies are a grouping of muscular diseases not induced by an autoimmune-mediated inflammatory pathway. These muscular diseases usually arise from a pathology within the muscle tissue itself rather than the nerves innervating that tissue. ANIM has a wide spectrum of causes which include drugs and toxins, nutritional imbalances, acquired metabolic dysfunctions such as an acquired defect in protein structure, and infections.
Acquired non-inflammatory myopathy is a different diagnosis than inflammatory myopathy. Inflammatory myopathies are a direct result of some type of autoimmune mediated pathway whereas ANIM is not the result of a dysfunction of the immune system. In addition, the cause of inflammatory myopathy is relatively unknown, whereas many causal agents for ANIM have been discovered which typically affect the structural integrity and function of the muscle fibers.
Most myopathies are typically first diagnosed and classified as an idiopathic inflammatory myopathy. However, a diagnosis of ANIM occurs when the cause of the myopathy is found to not arise from an autoimmune mechanism.
Lazy eye, in particular strabismus may be the result of coordination between the extraocular muscles, which prevents a person on directing both eyes in unison towards the same fixation point. The main cause of strabismus is usually the muscular imbalance of the six surrounding muscles that allow both eyes to focus on the same object. As each eye does not have the same focus, different images are sent to the brain, confusing it, resulting in the brain ignoring the image from the weaker eye and if left untreated will cause a loss of vision in the ignored eye called amblyopia. Further symptoms of strabismus include decreased vision, double vision, headaches, asthenopia and eye fatigue.
Benign fasciculation syndrome (BFS) is a neurological disorder characterized by fasciculation (twitching) of various voluntary muscles in the body. The twitching can occur in any voluntary muscle group but is most common in the eyelids, arms, legs, and feet. Even the tongue may be affected. The twitching may be occasional or may go on nearly continuously. Usually intentional movement of the involved muscle causes the fasciculations to cease immediately, but they may return once the muscle is at rest again.
People with CIP/CIM have diffuse, symmetric, flaccid muscle weakness. CIP/CIM typically develops in the setting of a critical illness and immobilization, so patients with CIP/CIM are often receiving treatment in the intensive care unit (ICU).
Weakness (motor deficits) occurs in generalized fashion, rather than beginning in one region of the body and spreading. Limb and respiratory (diaphragm) muscles are especially affected. The muscles of the face are usually spared, but in rare cases, the eye muscles may be weakened, leading to ophthalmoplegia.
Respiratory difficulties can be caused by atrophy of the muscles between the ribs (intercostals), atrophy of the diaphragm muscle, and degeneration of the nerve that stimulates the diaphragm (phrenic nerve). This can prolong the time the wean a person off of a breathing machine (mechanical ventilation) by as much as 7 – 13 days.
Deep tendon reflexes may be lost or diminished, and there may be bilateral symmetric flaccid paralysis of the arms and legs. The nervous system manifestations are typically limited to peripheral nerves, as the central nervous system is usually unaffected.
Myopathies in systemic disease results from several different disease processes including endocrine, inflammatory, paraneoplastic, infectious, drug- and toxin-induced, critical illness myopathy, metabolic, collagen related, and myopathies with other systemic disorders. Patients with systemic myopathies often present acutely or sub acutely. On the other hand, familial myopathies or dystrophies generally present in a chronic fashion with exceptions of metabolic myopathies where symptoms on occasion can be precipitated acutely. Most of the inflammatory myopathies can have a chance association with malignant lesions; the incidence appears to be specifically increased only in patients with dermatomyositis.
There are many types of myopathy. ICD-10 codes are provided here where available.
Hypertonia is caused by upper motor neuron lesions which may result from injury, disease, or conditions that involve damage to the central nervous system. The lack of or decrease in upper motor neuron function leads to loss of inhibition with resultant hyperactivity of lower motor neurons. Different patterns of muscle weakness or hyperactivity can occur based on the location of the lesion, causing a multitude of neurological symptoms, including spasticity, rigidity, or dystonia.
Spastic hypertonia involves uncontrollable muscle spasms, stiffening or straightening out of muscles, shock-like contractions of all or part of a group of muscles, and abnormal muscle tone. It is seen in disorders such as cerebral palsy, stroke, and spinal cord injury. Rigidity is a severe state of hypertonia where muscle resistance occurs throughout the entire range of motion of the affected joint independent of velocity. It is frequently associated with lesions of the basal ganglia. Individuals with rigidity present with stiffness, decreased range of motion and loss of motor control. Dystonic hypertonia refers to muscle resistance to passive stretching (in which a therapist gently stretches the inactive contracted muscle to a comfortable length at very low speeds of movement) and a tendency of a limb to return to a fixed involuntary (and sometimes abnormal) posture following movement.
Hypertonia is a term sometimes used synonymously with spasticity and rigidity in the literature surrounding damage to the central nervous system, namely upper motor neuron lesions. Impaired ability of damaged motor neurons to regulate descending pathways gives rise to disordered spinal reflexes, increased excitability of muscle spindles, and decreased synaptic inhibition. These consequences result in abnormally increased muscle tone of symptomatic muscles. Some authors suggest that the current definition for spasticity, the velocity-dependent over-activity of the stretch reflex, is not sufficient as it fails to take into account patients exhibiting increased muscle tone in the absence of stretch reflex over-activity. They instead suggest that "reversible hypertonia" is more appropriate and represents a treatable condition that is responsive to various therapy modalities like drug and/or physical therapy.
Symptoms associated with central nervous systems disorders are classified into positive and negative categories. Positive symptoms include those that increase muscle activity through hyper-excitability of the stretch reflex (i.e., rigidity and spasticity) where negative symptoms include those of insufficient muscle activity (i.e. weakness) and reduced motor function. Often the two classifications are thought to be separate entities of a disorder; however, some authors propose that they may be closely related.
Many patients report that temperature may affect the severity of symptoms, especially cold as being an aggravating factor. However, there is some scientific debate on this subject, and some even report that cold may alleviate symptoms.
A number of terms are used to describe critical illness polyneuropathy, partially because there is often neuropathy and myopathy in the same person, and nerve and muscle degeneration are difficult to distinguish from each other in this condition. Terms used for the condition include: critical illness polyneuromyopathy, critical illness neuromyopathy, and critical illness myopathy and neuropathy (CRIMYNE). Bolton's neuropathy is an older term, which is no longer used.
The prolonged muscle contractions, which occur most commonly in the leg muscles in recessive mutations, and more commonly in the hands, face, and eyelids in dominant mutations, are often enhanced by inactivity, and in some forms are relieved by repetitive movement known as "the warm-up effect". This effect often diminishes quickly with rest. Some individuals with myotonia congenita are prone to falling as a result of hasty movements or an inability to stabilize themselves after a loss of balance. During a fall, a person with myotonia congenita may experience partial or complete rigid paralysis that will quickly resolve once the event is over. However, a fall into cold water may render the person unable to move for the duration of submergence. As with myotonic goats, children are more prone to falling than adults, due to their impulsivity.
The two major types of myotonia congenita are distinguished by the severity of their symptoms and their patterns of inheritance. Becker disease usually appears later in childhood than Thomsen disease, and causes more severe myotonia, muscle stiffness and transient weakness. Although myotonia in itself is not normally associated with pain, cramps or myalgia may develop. People with Becker disease often experience temporary attacks of muscle weakness, particularly in the arms and hands, brought on by movement after periods of rest. They may also develop mild, permanent muscle weakness over time. This muscle weakness is not observed in people with Thomsen disease. However, in recent times, as more of the individual mutations that cause myotonia congenita are identified, these limited disease classifications are becoming less widely used.
Early symptoms in a child may include:
- Difficulty swallowing
- Gagging
- Stiff movements that improve when they are repeated
- Frequent falling
- Difficulties opening eyelids after strenuous contraction or crying (von Graefe's sign)
Possible complications may include:
- Aspiration pneumonia (caused by swallowing difficulties)
- Frequent choking or gagging in infants (also caused by swallowing difficulties)
- Abdominal muscle weakness
- Chronic joint problems
- Injury due to falls
Patient feels contracture of middle and ring finger. Slight thinning of the subdigital Palm of the affected fingers. Initial pain and weakness subside with preliminary treatment with antiinflammatories, and B-complex vitamins. Initial loss of function improves almost fully.
Upper motor neuron syndrome (UMNS) is the motor control changes that can occur in skeletal muscle after an upper motor neuron lesion.
Following upper motor neuron lesions, affected muscles potentially have many features of altered performance including:
- weakness (decreased ability for the muscle to generate force)
- decreased motor control including decreased speed, accuracy and dexterity
- altered muscle tone (hypotonia or hypertonia) – a decrease or increase in the baseline level of muscle activity
- decreased endurance
- exaggerated deep tendon reflexes including spasticity, and clonus (a series of involuntary rapid muscle contractions)
Such signs are collectively termed the "upper motor neuron syndrome". Affected muscles typically show multiple signs, with severity depending on the degree of damage and other factors that influence motor control. In neuroanatomical circles, it is often joked, for example, that hemisection of the cervical spinal cord leads to an "upper lower motor neuron syndrome and a lower upper motor neuron syndrome". The saying refers to lower motor neuron symptoms in the upper extremity (arm) and upper motor neurons symptoms in the lower extremity (leg).
The upper motor neuron syndrome signs are seen in conditions where motor areas in the brain and/or spinal cord are damaged or fail to develop normally. These include spinal cord injury, cerebral palsy, multiple sclerosis and acquired brain injury including stroke. The impact of impairment of muscles for an individual is problems with movement, and posture, which often affects their function.
Health professionals' understanding of impairments in muscles after an upper motor neuron lesion has progressed considerably in recent decades. However, a diagnosis of "spasticity" is still often used interchangeably with upper motor neuron syndrome, and it is not unusual to see patients labeled as spastic who demonstrate an array of UMN findings.
Spasticity is an exaggerated stretch reflex, which means that a muscle has a reflex contraction when stretched, and that this contraction is stronger when the stretch is applied more quickly. The commonly quoted definition by Lance (1980) describes "a motor disorder, characterised by a velocity-dependent increase in tonic stretch reflexes with exaggerated tendon jerks, resulting from hyper-excitability of the stretch reflex as one component of the upper motor neurone (UMN) syndrome".
Spasticity is a common feature of muscle performance after upper motor neuron lesions, but is generally of much less clinical significance than other features such as decreased strength, decreased control and decreased endurance. The confusion in the use of the terminology complicates assessment and treatment planning by health professionals, as many confuse the other findings of upper motor neuron syndrome and describe them as spasticity. This confusion potentially leaves health professionals attempting to inhibit an exaggerated stretch reflex to improve muscle performance, potentially leaving more significant UMNS changes such as weakness unaddressed. Improved understanding of the multiple features of the upper motor neuron syndrome supports more rigorous assessment, and improved treatment planning.
Changes in muscle performance can be broadly described as the upper motor neuron syndrome. These changes vary depending on the site and the extent of the lesion, and may include:
- Muscle weakness. A pattern of weakness in the extensors (upper limbs) or flexors (lower limbs), is known as 'pyramidal weakness'
- Decreased control of active movement, particularly slowness
- Spasticity, a velocity-dependent change in muscle tone
- Clasp-knife response where initial higher resistance to movement is followed by a lesser resistance
- Babinski sign is present, where the big toe is raised (extended) rather than curled downwards (flexed) upon appropriate stimulation of the sole of the foot. The presence of the Babinski sign is an abnormal response in adulthood. Normally, during the plantar reflex, it causes plantar flexion and the adduction of the toes. In Babinski's sign, there is dorsiflexion of the big toe and abduction of the other toes. Physiologically, it is normally present in infants from birth to 12 months. The presence of the Babinski sign after 12 months is the sign of a non-specific upper motor neuron lesion.
- Increased deep tendon reflex (DTR)
- Pronator drift
Patients with spinal accessory nerve palsy often exhibit signs of lower motor neuron disease such as diminished muscle mass, fasciculations, and partial paralysis of the sternocleidomastoid and trapezius muscles. Interruption of the nerve supply to the sternocleidomastoid muscle results in an asymmetric neckline, while weakness of the trapezius muscle can produce a drooping shoulder, winged scapula, and a weakness of forward elevation of the shoulder.
Weakness of the triceps surae muscle has been seen in many patients who have been diagnosed with astasis. This weakness can be caused by a myopathy to that muscle group. The bilateral triceps surae muscle, made up of the gastrocnemius and the soleus, is essential to maintain a straight posture while standing. This indicates that weakness to this muscle is the cause of the swaying and impaired posture in patients with astasis. This weakness is seen regardless of whether somatosensory feedback from the legs is impaired, suggesting it is one of the main causes of astasia without abasia.
Onset of PLS usually occurs spontaneously after age 50 and progresses gradually over a number of years, or even decades. The disorder usually begins in the legs, but it may start in the tongue or the hands. Symptoms may include difficulty with balance, weakness and stiffness in the legs, and clumsiness. Other common symptoms are spasticity (involuntary muscle contraction due to the stretching of muscle, which depends on the velocity of the stretch) in the hands, feet, or legs, foot dragging, and speech and swallowing problems due to involvement of the facial muscles. Breathing may also become compromised in the later stages of the disease, causing those patients who develop ventilatory failure to require noninvasive ventilatory support. Hyperreflexia is another key feature of PLS as seen in patients presenting with the Babinski's sign. Some people present with emotional lability and bladder urgency, and occasionally people with PLS experience mild cognitive changes detectable on neuropsychological testing, particularly on measures of executive function.
PLS is not considered hereditary when onset is in adulthood; however, juvenile primary lateral sclerosis (JPLS) has been linked to a mutation in the ALS2 gene which encodes the cell-signalling protein alsin.
The issue of whether PLS exists as a different entity from ALS is not clear, as some patients initially diagnosed as having PLS ultimately develop lower motor neuron signs.
There are no specific tests for the diagnosis of PLS. Therefore, the diagnosis occurs as the result of eliminating other possible causes of the symptoms and by an extended observation period.
How sIBM affects individuals is quite variable as is the age of onset (which generally varies from the forties upwards). Because sIBM affects different people in different ways and at different rates, there is no "textbook case."
Eventually, sIBM results in general, progressive muscle weakness. The muscles in the thighs called the quadriceps and the muscles in the arms that control finger flexion—making a fist—are usually affected early on. Common early symptoms include frequent tripping and falling, weakness going up stairs and trouble manipulating the fingers (including difficulty with tasks such as turning doorknobs or gripping keys). Foot drop in one or both feet has been a symptom of IBM and advanced stages of polymyositis (PM).
During the course of the illness, the patient's mobility is progressively restricted as it becomes hard for him or her to bend down, reach for things, walk quickly and so on. Many patients say they have balance problems and fall easily, as the muscles cannot compensate for an off-balanced posture. Because sIBM makes the leg muscles weak and unstable, patients are very vulnerable to serious injury from tripping or falling down. Although pain has not been traditionally part of the "textbook" description, many patients report severe muscle pain, especially in the thighs.
When present, difficulty swallowing (dysphagia) is a progressive condition in those with inclusion body myositis and often leads to death from aspiration pneumonia. Dysphagia is present in 40 to 85% of IBM cases.
IBM can also result in diminished capacity for aerobic exercise. This decline is most likely a consequence of the sedentary lifestyle that is often associated with the symptoms of IBM (i.e. progressive muscle weakness, decreased mobility, and increased level of fatigue). Therefore, one focus of treatment should be the improvement of aerobic capacity.
Patients with sIBM usually eventually need to resort to a cane or a walker and in most cases, a wheelchair eventually becomes a necessity.
"The progressive course of s-IBM leads slowly to severe disability. Finger functions can become very impaired, such as for manipulating pens, keys, buttons, and zippers, pulling handles, and firmly grasping handshakes. Arising from a chair becomes difficult. Walking becomes more precarious. Sudden falls, sometimes resulting in major injury to the skull or other bones, can occur, even from walking on minimally-irregular ground or from other minor imbalances outside or in the home, due to weakness of quadriceps and gluteus muscles depriving the patient of automatic posture maintenance. A foot-drop can increase the likelihood of tripping. Dysphagia can occur, usually caused by upper esophageal constriction that often can be symptomatically improved, for several months to years, by bougie dilation per a GI or ENT physician. Respiratory muscle weakness can sometimes eventuate."