Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Viral meningitis characteristically presents with fever, headache and neck stiffness. Fever is the result of cytokines released that affect the thermoregulatory neurons of the hypothalamus. Cytokines and increased intracranial pressure stimulate nociceptors in the brain that lead to headaches. Neck stiffness is the result of inflamed meninges stretching due to flexion of the spine. In contrast to bacterial meningitis, symptoms are often less severe and do not progress as quickly. Nausea, vomiting and photophobia (light sensitivity) also commonly occur, as do general signs of a viral infection, such as muscle aches and malaise. Increased cranial pressure from viral meningitis stimulates the area postrema, which causes nausea and vomiting. Photophobia is due to meningeal irritation. In severe cases, people may experience concomitant encephalitis (meningoencephalitis), which is suggested by symptoms such as altered mental status, seizures or focal neurologic deficits.
Babies with viral meningitis may only appear irritable, sleepy or have trouble eating. In severe cases, people may experience concomitant encephalitis (meningoencephalitis), which is suggested by symptoms such as altered mental status, seizures or focal neurologic deficits. The pediatric population may show some additional signs and symptoms that include jaundice and bulging fontanelles.
Viral meningitis, also known as aseptic meningitis, is a type of meningitis due to a viral infection. It results in inflammation of the meninges (the membranes covering the brain and spinal cord). Symptoms commonly include headache, fever, sensitivity to light, and neck stiffness.
Viruses are the most common cause of aseptic meningitis. Most cases of viral meningitis are caused by enteroviruses (common stomach viruses). However, other viruses can also cause viral meningitis. For instance, West Nile virus, mumps, measles, herpes simplex types I and II, varicella, and lymphocytic choriomeningitis (LCM) virus. Based on clinical symptoms, viral meningitis cannot be reliably differentiated from bacterial meningitis, although viral meningitis typically follows a more benign clinical course. Viral meningitis has no evidence of bacteria present in cerebral spinal fluid (CSF). Therefore, lumbar puncture with CSF analysis is often needed to identify the disease.
In most causes there is no specific treatment, with efforts generally aimed at relieving symptoms (headache, fever, or nausea). A few viral causes, such as HSV, have specific treatments.
In the United States viral meningitis is the cause of greater than half of all cases of meningitis. From 1988–1999, about 36,000 cases occurred a year. While the disease can occur in both children and adults it is more common in children.
In adults, the most common symptom of meningitis is a severe headache, occurring in almost 90% of cases of bacterial meningitis, followed by nuchal rigidity (the inability to flex the neck forward passively due to increased neck muscle tone and stiffness). The classic triad of diagnostic signs consists of nuchal rigidity, sudden high fever, and altered mental status; however, all three features are present in only 44–46% of bacterial meningitis cases. If none of the three signs are present, acute meningitis is extremely unlikely. Other signs commonly associated with meningitis include photophobia (intolerance to bright light) and phonophobia (intolerance to loud noises). Small children often do not exhibit the aforementioned symptoms, and may only be irritable and look unwell. The fontanelle (the soft spot on the top of a baby's head) can bulge in infants aged up to 6 months. Other features that distinguish meningitis from less severe illnesses in young children are leg pain, cold extremities, and an abnormal skin color.
Nuchal rigidity occurs in 70% of bacterial meningitis in adults. Other signs include the presence of positive Kernig's sign or Brudziński sign. Kernig's sign is assessed with the person lying supine, with the hip and knee flexed to 90 degrees. In a person with a positive Kernig's sign, pain limits passive extension of the knee. A positive Brudzinski's sign occurs when flexion of the neck causes involuntary flexion of the knee and hip. Although Kernig's sign and Brudzinski's sign are both commonly used to screen for meningitis, the sensitivity of these tests is limited. They do, however, have very good specificity for meningitis: the signs rarely occur in other diseases. Another test, known as the "jolt accentuation maneuver" helps determine whether meningitis is present in those reporting fever and headache. A person is asked to rapidly rotate the head horizontally; if this does not make the headache worse, meningitis is unlikely.
Other problems can produce symptoms similar to those above, but from non-meningitic causes. This is called meningism or pseudomeningitis.
Meningitis caused by the bacterium "Neisseria meningitidis" (known as "meningococcal meningitis") can be differentiated from meningitis with other causes by a rapidly spreading petechial rash, which may precede other symptoms. The rash consists of numerous small, irregular purple or red spots ("petechiae") on the trunk, lower extremities, mucous membranes, conjuctiva, and (occasionally) the palms of the hands or soles of the feet. The rash is typically non-blanching; the redness does not disappear when pressed with a finger or a glass tumbler. Although this rash is not necessarily present in meningococcal meningitis, it is relatively specific for the disease; it does, however, occasionally occur in meningitis due to other bacteria. Other clues on the cause of meningitis may be the skin signs of hand, foot and mouth disease and genital herpes, both of which are associated with various forms of viral meningitis.
Although DNA analysis techniques such as Polymerase chain reaction can be used to look for DNA of herpesviruses in spinal fluid or blood, the results may be negative, even in cases where other definitive symptoms exist.
Mollaret's meningitis is characterized by chronic, recurrent episodes of headache, stiff neck, meningismus, and fever; cerebrospinal fluid (CSF) pleocytosis with large "endothelial" cells, neutrophil granulocytes, and lymphocytes; and attacks separated by symptom-free periods of weeks to years; and spontaneous remission of symptoms and signs. Many people have side effects between bouts that vary from chronic daily headaches to after-effects from meningitis such as hearing loss and visual impairment, nerve pain and twitches. Symptoms may be mild or severe. Some cases may be short, lasting only 3–7 days, while others last for weeks to months.
While herpes simplex and varicella can cause rash, Mollaret's patients may or may not have a rash. Herpes simplex virus is likely the most common cause of Mollaret's meningitis.
Characteristics of a viral infection can include pain, swelling, redness, impaired function, fever, drowsiness, confusion and convulsions.
The virus can infect the brain (encephalitis), the meninges (meningitis) or both (meningoencephalitis).
In general, mortality is 1% to 2%, with deaths occurring 5 to 7 days after the onset of neurologic signs.
In dogs, the disease also manifests as a neurological disorder with signs varying from tremors to seizures and death.
In ruminants, neurological disease is also present, and animals may refuse to eat, appear lethargic, and also develop respiratory signs.
Additional problems may occur in the early stage of the illness. These may require specific treatment, and sometimes indicate severe illness or worse prognosis. The infection may trigger sepsis, a systemic inflammatory response syndrome of falling blood pressure, fast heart rate, high or abnormally low temperature, and rapid breathing. Very low blood pressure may occur at an early stage, especially but not exclusively in meningococcal meningitis; this may lead to insufficient blood supply to other organs. Disseminated intravascular coagulation, the excessive activation of blood clotting, may obstruct blood flow to organs and paradoxically increase the bleeding risk. Gangrene of limbs can occur in meningococcal disease. Severe meningococcal and pneumococcal infections may result in hemorrhaging of the adrenal glands, leading to Waterhouse-Friderichsen syndrome, which is often fatal.
The brain tissue may swell, pressure inside the skull may increase and the swollen brain may herniate through the skull base. This may be noticed by a decreasing level of consciousness, loss of the pupillary light reflex, and abnormal posturing. The inflammation of the brain tissue may also obstruct the normal flow of CSF around the brain (hydrocephalus). Seizures may occur for various reasons; in children, seizures are common in the early stages of meningitis (in 30% of cases) and do not necessarily indicate an underlying cause. Seizures may result from increased pressure and from areas of inflammation in the brain tissue. Focal seizures (seizures that involve one limb or part of the body), persistent seizures, late-onset seizures and those that are difficult to control with medication indicate a poorer long-term outcome.
Inflammation of the meninges may lead to abnormalities of the cranial nerves, a group of nerves arising from the brain stem that supply the head and neck area and which control, among other functions, eye movement, facial muscles, and hearing. Visual symptoms and hearing loss may persist after an episode of meningitis. Inflammation of the brain (encephalitis) or its blood vessels (cerebral vasculitis), as well as the formation of blood clots in the veins (cerebral venous thrombosis), may all lead to weakness, loss of sensation, or abnormal movement or function of the part of the body supplied by the affected area of the brain.
The most common diseases caused by acute viral infections are encephalitis, flaccid paralysis, aseptic meningitis, post infectious and encephalomyelitis.
Mumps is usually preceded by a set of prodromal symptoms including low-grade fever, headache, and malaise. This is followed by progressive swelling of one or both parotid glands. Parotid gland swelling usually lasts about one week. Other symptoms of mumps can include dry mouth, sore face and/or ears and some patients find it difficult to talk. A vaccine has been available since the 1960s.
Herpesviral meningitis is meningitis associated with herpes simplex virus (HSV).
HSV-2 is the most common cause of Mollaret's meningitis, a type of recurrent viral meningitis. This condition was first described in 1944 by French neurologist Pierre Mollaret. Recurrences usually last a few days or a few weeks, and resolve without treatment. They may recur weekly or monthly for approximately 5 years following primary infection.
Possible symptoms of "Haemophilus" meningitis include:
- Nausea or vomiting
- Fever
- Headache
- Sensitivity to light
- Seizures
- Anorexia
- change in mental status, such as irritability
- stiff neck
The incubation period for WNV—the amount of time from infection to symptom onset—is typically from between 2 and 15 days. Headache can be a prominent symptom of WNV fever, meningitis, encephalitis, meningoencephalitis, and it may or may not be present in poliomyelitis-like syndrome. Thus, headache is not a useful indicator of neuroinvasive disease.
- West Nile fever (WNF), which occurs in 20 percent of cases, is a febrile syndrome that causes flu-like symptoms. Most characterizations of WNF generally describe it as a mild, acute syndrome lasting 3 to 6 days after symptom onset. Systematic follow-up studies of patients with WNF have not been done, so this information is largely anecdotal. In addition to a high fever, headache, chills, excessive sweating, weakness, fatigue, swollen lymph nodes, drowsiness, pain in the joints and flu-like symptoms. Gastrointestinal symptoms that may occur include nausea, vomiting, loss of appetite, and diarrhea. Fewer than one-third of patients develop a rash.
- West Nile neuroinvasive disease (WNND), which occurs in less than 1 percent of cases, is when the virus infects the central nervous system resulting in meningitis, encephalitis, meningoencephalitis or a poliomyelitis-like syndrome. Many patients with WNND have normal neuroimaging studies, although abnormalities may be present in various cerebral areas including the basal ganglia, thalamus, cerebellum, and brainstem.
- West Nile virus encephalitis (WNE) is the most common neuroinvasive manifestation of WNND. WNE presents with similar symptoms to other viral encephalitis with fever, headaches, and altered mental status. A prominent finding in WNE is muscular weakness (30 to 50 percent of patients with encephalitis), often with lower motor neuron symptoms, flaccid paralysis, and hyporeflexia with no sensory abnormalities.
- West Nile meningitis (WNM) usually involves fever, headache, and stiff neck. Pleocytosis, an increase of white blood cells in cerebrospinal fluid, is also present. Changes in consciousness are not usually seen and are mild when present.
- West Nile meningoencephalitis is inflammation of both the brain (encephalitis) and meninges (meningitis).
- West Nile poliomyelitis (WNP), an acute flaccid paralysis syndrome associated with WNV infection, is less common than WNM or WNE. This syndrome is generally characterized by the acute onset of asymmetric limb weakness or paralysis in the absence of sensory loss. Pain sometimes precedes the paralysis. The paralysis can occur in the absence of fever, headache, or other common symptoms associated with WNV infection. Involvement of respiratory muscles, leading to acute respiratory failure, can sometimes occur.
- West-Nile reversible paralysis, Like WNP, the weakness or paralysis is asymmetric. Reported cases have been noted to have an initial preservation of deep tendon reflexes, which is not expected for a pure anterior horn involvement. Disconnect of upper motor neuron influences on the anterior horn cells possibly by myelitis or glutamate excitotoxicity have been suggested as mechanisms. The prognosis for recovery is excellent.
- Nonneurologic complications of WNV infection that may rarely occur include fulminant hepatitis, pancreatitis, myocarditis, rhabdomyolysis, orchitis, nephritis, optic neuritis and cardiac dysrhythmias and hemorrhagic fever with coagulopathy. Chorioretinitis may also be more common than previously thought.
- Cutaneous manifestations specifically rashes, are not uncommon in WNV-infected patients; however, there is a paucity of detailed descriptions in case reports and there are few clinical images widely available. Punctate erythematous, macular, and papular eruptions, most pronounced on the extremities have been observed in WNV cases and in some cases histopathologic findings have shown a sparse superficial perivascular lymphocytic infiltrate, a manifestation commonly seen in viral exanthems. A literature review provides support that this punctate rash is a common cutaneous presentation of WNV infection.
Mumps is a viral disease caused by the mumps virus. Initial signs and symptoms often include fever, muscle pain, headache, and feeling tired. This is then usually followed by painful swelling of one or both parotid salivary glands. Symptoms typically occur 16 to 18 days after exposure and resolve after seven to ten days. Symptoms in adults are often more severe than in children. About a third of people have mild or no symptoms. Complications may include meningitis (15 percent), pancreatitis (four percent), permanent deafness, and testicular inflammation which uncommonly results in infertility. Women may develop ovarian swelling but this does not increase the risk of infertility.
Mumps is highly contagious and spreads rapidly among people living in close quarters. The virus is transmitted by respiratory droplets or direct contact with an infected person. Only humans get and spread the disease. People are infectious to each other from about seven days before the start of symptoms to about eight days after. Once an infection has run its course, a person is typically immune for life. Reinfection is possible but the ensuing infection tends to be mild. Diagnosis is usually suspected due to parotid swelling and can be confirmed by isolating the virus on a swab of the parotid duct. Testing for IgM antibodies in the blood is simple and may be useful; however, it can be falsely negative in those who have been immunized.
Mumps is preventable by two doses of the mumps vaccine. Most of the developed world includes it in their immunization programs, often in combination with measles, rubella, and varicella vaccine. Countries that have low immunization rates may see an increase in cases among older age groups and thus worse outcomes. There is no specific treatment. Efforts involve controlling symptoms with pain medication such as paracetamol (acetaminophen). Intravenous immunoglobulin may be useful in certain complications. Hospitalization may be required if meningitis or pancreatitis develops. About one per ten thousand people who are infected die.
Without immunization about 0.1 percent to one percent of the population are affected per year. Widespread vaccination has resulted in a more than 90 percent decline in rates of disease. Mumps is more common in the developing world where vaccination is less common. Outbreaks, however, may still occur in a vaccinated population. Before the introduction of a vaccine, mumps was a common childhood disease worldwide. Larger outbreaks of disease would typically occur every two to five years. Children between the ages of five and nine were most commonly affected. Among immunized populations often those in their early 20s are affected. Around the equator it often occurs all year round while in the more northerly and southerly regions of the world it is more common in the winter and spring. Painful swelling of the parotid glands and testicles was described by Hippocrates in the 5th century BCE.
Diagnosis starts by examining the patient's symptoms. Symptoms can vary. Symptoms can include headache, sensitivity to light, neck stiffness, nausea, and vomiting. In some patients, fever is absent. Neurological examination and MRI can be normal.
Mollaret's meningitis is suspected based on symptoms, and can be confirmed by HSV 1 or HSV 2 on PCR of Cerebrospinal fluid (CSF), although not all cases test positive on PCR. PCR is performed on spinal fluid or blood, however, the viruses do not need to enter the spinal fluid or blood to spread within the body: they can spread by moving through the axons and dendrites of the nerves.
During the first 24 h of the disease the spinal fluid will show predominant polymorphonuclear neutrophils and large cells that have been called endothelial (Mollaret’s) cells.
A study performed on patients who had diffuse symptoms, such as persistent or intermittent headaches, concluded that although PCR is a highly sensitive method for detection, it may not always be sensitive enough for identification of viral DNA in CSF, due to the fact that viral shedding from latent infection may be very low. The concentration of viruses in CSF during subclinical infection might be very low.
Investigations include blood tests (electrolytes, liver and kidney function, inflammatory markers and a complete blood count) and usually X-ray examination of the chest. The most important test in identifying or ruling out meningitis is analysis of the cerebrospinal fluid (fluid that envelops the brain and the spinal cord) through lumbar puncture (LP). However, if the patient is at risk for a cerebral mass lesion or elevated intracranial pressure (recent head injury, a known immune system problem, localizing neurological signs, or evidence on examination of a raised ICP), a lumbar puncture may be contraindicated because of the possibility of fatal brain herniation. In such cases, a CT or MRI scan is generally performed prior to the lumbar puncture to exclude this possibility. Otherwise, the CT or MRI should be performed after the LP, with MRI preferred over CT due to its superiority in demonstrating areas of cerebral edema, ischemia, and meningeal inflammation.
During the lumbar puncture procedure, the opening pressure is measured. A pressure of over 180 mm HO is suggestive of bacterial meningitis.
It is likely that Mollaret meningitis is underrecognized by physicians, and improved recognition may limit unwarranted antibiotic use and shorten or eliminate unnecessary hospital admission.
PCR testing has advanced the state of the art in research, but PCR can be negative in individuals with Mollaret's, even during episodes with severe symptoms. For example, Kojima et al. published a case study for an individual who was hospitalized repeatedly, and who had clinical symptoms including genital herpes lesions. However, the patient was sometimes negative for HSV-2 by PCR, even though his meningitis symptoms were severe. Treatment with acyclovir was successful, indicating that a herpes virus was the cause of his symptoms.
Tick-borne encephalitis (TBE) is a viral infectious disease involving the central nervous system. The disease most often manifests as meningitis, encephalitis, or meningoencephalitis. Although TBE is most commonly recognized as a neurological disorder, mild fever can also occur. Long-lasting or permanent neuropsychiatric consequences are observed in 10 to 20% of infected patients.
The number of reported cases has been increasing in most countries.
The tick-borne encephalitis virus is known to infect a range of hosts including ruminants, birds, rodents, carnivores, horses, and humans. The disease can also be spread from animals to humans, with ruminants and dogs providing the principal source of infection for humans.
TBE, like Lyme disease, is one of the many tick-borne diseases.
Fever and headache are the cardinal features, confusion is a late feature and coma bears a poor prognosis. Meningism is absent in a fifth of patients with TB meningitis. Patients may also have focal neurological deficits.
Causative organisms include protozoans, viral and bacterial pathogens.
Specific types include:
Meningoencephalitis (; from Greek μῆνιγξ "meninx", "membrane", ἐγκέφαλος, "enképhalos" "brain", and the medical suffix "-itis", "inflammation") is a medical condition that simultaneously resembles both meningitis, which is an infection or inflammation of the meninges, and encephalitis, which is an infection or inflammation of the brain.
"Haemophilus" meningitis is a form of bacterial meningitis caused by the "Haemophilus influenzae" bacteria. It is usually (but not always) associated with "Haemophilus influenzae" type b. Meningitis involves the inflammation of the protective membranes that cover the brain and spinal cord. "Haemophilus" meningitis is characterized by symptoms including fever, nausea, sensitivity to light, headaches, stiff neck, anorexia, and seizures. "Haemophilus" meningitis can be deadly, but antibiotics are effective in treating the infection, especially when cases are caught early enough that the inflammation has not done a great deal of damage. Before the introduction of the Hib vaccine in 1985, Haemophilus meningitis was the leading cause of bacterial meningitis in children under the age of five. However, since the creation of the Hib vaccine, only two in every 100,000 children contract this type of meningitis. Five to ten percent of cases can be fatal, although the average mortality rate in developing nations is seventeen percent, mostly due to lack of access to vaccination as well as lack of access to medical care needed to combat the meningitis.
The patient with meningococcal meningitis typically presents with high fever, nuchal rigidity (stiff neck), Kernig's sign, severe headache, vomiting, purpura, photophobia, and sometimes chills, altered mental status, or seizures. Diarrhea or respiratory symptoms are less common. Petechiae are often also present, but do not always occur, so their absence should not be used against the diagnosis of meningococcal disease. Anyone with symptoms of meningococcal meningitis should receive intravenous antibiotics before the results of lumbar puncture, as delay in treatment worsens the prognosis.
As with any gram-negative bacterium, "N. meningitidis" can infect a variety of sites.
Meningococcal pneumonia can appear during influenza pandemics and in military camps. This is a multilobar, rapidly evolving pneumonia, sometimes associated with septic shock. With prompt treatment, the prognosis is excellent. Another alternative is dexamethasone with vancomycin and meropenem. Pericarditis can appear, either as a septic pericarditis with grave prognosis or as a reactive pericarditis in the wake of meningitis or septicaemia.
Myocarditis can be a complication of meningococcemia and can be contributive to shock seen in this form of disease. Pharyngitis and conjunctivitis can also appear and can constitute the portal of entry for the bacterium. Septic arthritis due to "N. meningitidis" can be seen, usually accompanying disseminated infection. Other forms of disease can rarely be seen, like osteomyelitis, endophthalmitis and urethritis.
The following is a list of common signs and symptoms found with neonatal meningitis.
- Fever
- poor appetite
- anterior fontanelle bulging
- seizure
- jitteriness
- dyspnea
- irritability
- anorexia
- vomiting
- diarrhea
- abdominal distention (increase in abdominal size)
- neck rigidity
- cyanosis
- jaundice
- and sunset eyes (downward gaze of the eyes)
- abnormal body temperature (hypo-or hyperthermia)
- change of activity (lethargy or irritability)
Unfortunately these symptoms are unspecific and may point to many different conditions.
Mycobacterium tuberculosis of the meninges is the cardinal feature and the inflammation is concentrated towards the base of the brain. When the inflammation is in the brain stem subarachnoid area, cranial nerve roots may be affected. The symptoms will mimic those of space-occupying lesions.
Blood-borne spread certainly occurs, presumably by crossing the blood–brain barrier; but a proportion of patients may get TB meningitis from rupture of a cortical focus in the brain; an even smaller proportion get it from rupture of a bony focus in the spine.
Neonatal meningitis is a serious medical condition in infants. Meningitis is an inflammation of the meninges (the protective membranes of the central nervous system (CNS)) and is more common in the neonatal period (infants less than 44 days old) than any other time in life and is an important cause of morbidity and mortality globally. Mortality is roughly half in developing countries and ranges from 8%-12.5% in developed countries.
Symptoms seen with neonatal meningitis are often unspecific that may point to several conditions, such as sepsis (whole body inflammation). These can include fever, irritability, and dyspnea. The only method to determine if meningitis is the cause of these symptoms is lumbar puncture (LP; an examination of the cerebrospinal fluid).
The most common causes of neonatal meningitis is bacterial infection of the blood, known as bacteremia (specifically Group B "Streptococci" (GBS; "Streptococcus agalactiae"), "Escherichia coli", and "Listeria monocytogenes"). Although there is a low mortality rate in developed countries, there is a 50% prevalence rate of neurodevelopmental disabilities in "E. coli" and GBS meningitis, while having a 79% prevalence for non-"E. coli" Gram-negative caused meningitis. Delayed treatment of neonatal meningitis may cause include cerebral palsy, blindness, deafness, and learning deficiencies.