Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Bannayan–Riley–Ruvalcaba syndrome is associated with enlarged head and benign mesodermal hamartomas (multiple hemangiomas, and intestinal polyps). Dysmorphy as well as delayed neuropsychomotor development can also be present. The head enlargement does not cause widening of the ventricles or raised intracranial pressure; these individuals have a higher risk of developing tumors, as the gene involved in BRRs is phosphatase and tensin homologue.
Some individuals have thyroid issues consistent with multinodular goiter, thyroid adenoma, differentiated non-medullary thyroid cancer,
most lesions are slowly growing. Visceral as well as intracranial involvement may occur in some cases, and can cause bleeding and symptomatic mechanical compression
People with Cowden syndrome develop characteristic lesions called hamartomas, which are small, noncancerous growths that are most commonly found on the skin and mucous membranes (such as the lining of the mouth, nose, and intestines), but can also occur other parts of the body, such as the thyroid and breast. The majority of affected individuals develop the characteristic skin lesions by 20 years of age.
Hamartomas are typically benign; however, people with Cowden syndrome are at increased risk of developing several types of cancer, including cancers of the breast, thyroid, uterus (endometrial), and kidney cancers. Two thirds of people have thyroid abnormalities, which usually consist of follicular adenomas (benign) or multinodular goiter of the thyroid. Up to 10 percent of people with Cowden Syndrome develop follicular thyroid cancer.
Skin abnormalities in people with Cowdens syndrome can include oral and skin papillomas and benign growths of the skin called trichilemmomas. Additional signs and symptoms of Cowden syndrome can include an enlarged head (macrocephaly), a rare noncancerous brain tumor called Lhermitte-Duclos disease, and glycogenic acanthosis of the esophagus. Up to 75% have benign breast conditions such as ductal hyperplasia, intraductal papillomatosis, adenosis, lobular atrophy, fibroadenomas, and fibrocystic changes.
Bannayan–Riley–Ruvalcaba syndrome (BRRS) is a rare overgrowth syndrome and hamartomatous disorder with occurrence of multiple subcutaneous lipomas, macrocephaly and hemangiomas. The disease is inherited in an autosomal dominant manner.
The disease belongs to a family of hamartomatous polyposis syndromes, which also includes Peutz–Jeghers syndrome, juvenile polyposis and Cowden syndrome. Mutation of the PTEN gene underlies this syndrome, as well as Cowden syndrome, Proteus syndrome, and Proteus-like syndrome, these four syndromes are referred to as PTEN Hamartoma-Tumor Syndromes.
Cowden syndrome (also known as Cowden's disease and sometimes as multiple hamartoma syndrome) is a rare autosomal dominant inherited disorder characterized by multiple non-cancerous tumor-like growths called hamartomas, which typically are found in the skin, mucous membranes (mouth, nasal membranes, GI tract), thyroid gland, and breast tissue. While the hamartomas are benign, people with Cowden syndrome are at increased risk of certain forms of cancer, including breast, thyroid, uterus (endometrial), and kidney cancers.
Cowden syndrome is associated with mutations in PTEN, a tumor suppressor gene, that cause the PTEN protein not to work properly leading to hyperactivity of the mTOR pathway. These mutations lead to characteristic features including macrocephaly, intestinal hamartomatous polyps, benign skin tumors (multiple trichilemmomas, papillomatous papules, and acral keratoses) and dysplastic gangliocytoma of the cerebellum (Lhermitte-Duclos disease). In addition, there is a predisposition to breast carcinoma, follicular carcinoma of the thyroid, and endometrial carcinoma.
The term multiple endocrine neoplasia (MEN) encompasses several distinct syndromes featuring tumors of endocrine glands, each with its own characteristic pattern. In some cases, the tumors are malignant, in others, benign. Benign or malignant tumors of nonendocrine tissues occur as components of some of these tumor syndromes.
MEN syndromes are inherited as autosomal dominant disorders.
Carney triad (CT) is characterized by the coexistence of three types of neoplasms, mainly in young women, including gastric gastrointestinal stromal tumor, pulmonary chondroma, and extra-adrenal paraganglioma. The underlying genetic defect remains elusive. CT is distinct from Carney complex, and the Carney-Stratakis syndrome.
Multiple hamartoma syndrome is a syndrome characterized by more than one hamartoma.
It is sometimes equated with Cowden syndrome. However, MeSH also includes Bannayan–Zonana syndrome (that is, Bannayan–Riley–Ruvalcaba syndrome) and Lhermitte–Duclos disease under this description. Some articles include Cowden syndrome, Bannayan–Riley–Ruvalcaba syndrome, and at least some forms of Proteus syndrome and Proteus-like syndrome under the umbrella term PTEN hamartoma tumor syndromes (PHTS).
Gardner syndrome, also known as Gardner's syndrome or familial colorectal polyposis, is an autosomal dominant form of polyposis characterized by the presence of multiple polyps in the colon together with tumors outside the colon. The extracolonic tumors may include osteomas of the skull, thyroid cancer, epidermoid cysts, fibromas, as well as the occurrence of desmoid tumors in approximately 15% of affected individuals.
Desmoid tumors are fibrous tumors which usually occur in the tissue covering the intestines and may be provoked by surgery to remove the colon. The countless polyps in the colon predispose to the development of colon cancer; if the colon is not removed, the chance of colon cancer is considered to be very significant. Polyps may also grow in the stomach, duodenum, spleen, kidneys, liver, mesentery and small bowel. In a small number of cases, polyps have also appeared in the cerebellum. Cancers related to Gardner syndrome commonly appear in the thyroid, liver and kidneys. The number of polyps increases with age, and hundreds to thousands of polyps can develop in the colon.
The syndrome was first described in 1951. There is no cure at this time, and in its more advanced forms, it is considered a terminal diagnosis with a life expectancy of 35–45 years; treatments are surgery and palliative care, although some chemotherapy has been tried with limited success.
Age of onset is variable. The term 'Juvenile' in the title of Juvenile polyposis syndrome refers to the histological type of the polyps rather than age of onset.
Affected individuals may present with rectal bleeding, abdominal pain, diarrhea or anemia. On colonoscopy or sigmoidoscopy polyps that vary in shape or size are present. The polyps can be sessile or pedunculated hamartomatous polyps.
MEN2 can present with a sign or symptom related to a tumor or, in the case of multiple endocrine neoplasia type 2b, with characteristic musculoskeletal and/or lip and/or gastrointestinal findings.Medullary thyroid carcinoma (MTC) represent the most frequent initial diagnosis. Occasionally pheochromocytoma or primary hyperparathyroidism may be the initial diagnosis.
Pheochromocytoma occurs in 33-50% of MEN2 cases. In MEN2A, primary hyperparathyroidism occurs in 10–50% of cases and is usually diagnosed after the third decade of life. Rarely, it may present in childhood or be the sole clinical manifestation of this syndrome.
MEN2A associates medullary thyroid carcinoma with pheochromocytoma in about 20–50% of cases and with primary hyperparathyroidism in 5–20% of cases.MEN2B associates medullary thyroid carcinoma with pheochromocytoma in 50% of cases, with marfanoid habitus and with mucosal and digestive neurofibromatosis.
In familial isolated medullary thyroid carcinoma the other components of the disease are absent.
In a review of 85 patients 70 had Men2A and 15 had Men2B. The initial manifestation of MEN2 was medullary thyroid carcinoma in 60% of patients, medullary thyroid carcinoma synchronous with pheochromocytoma in 34% and pheochromocytoma alone in 6%. 72% had bilateral pheochromocytomas.
Hyperparathyroidism is present in ≥ 90% of patients. Asymptomatic hypercalcemia is the most common manifestation: about 25% of patients have evidence of nephrolithiasis or nephrocalcinosis. In contrast to sporadic cases of hyperparathyroidism, diffuse hyperplasia or multiple adenomas are more common than solitary adenomas.
The Carney complex is a distinct entity, characterized by myxomatous neoplasms (cardiac, endocrine, cutaneous and neural), and a host of pigmented lesions of the skin and mucosae, including the rarely occurring epitheloid blue nevus.
One of the most troublesome hamartomas occurs on the hypothalamus. Unlike most such growths, a hypothalamic hamartoma is symptomatic; it most often causes gelastic seizures, and can cause visual problems, other seizures, rage disorders associated with hypothalamic diseases, and early onset of puberty. The symptoms typically begin in early infancy and are progressive, often into general cognitive and/or functional disability. Moreover, resection is usually difficult, as the growths are generally adjacent to, or even intertwined with, the optic nerve. Symptoms tend to be resistant to medical control; however, surgical techniques are improving and can result in immense improvement of prognosis.
Although not officially categorized as multiple endocrine neoplasia syndromes, Von Hippel-Lindau disease and Carney complex are two other autosomal dominant endocrine tumor syndromes with features that overlap the clinical features of the MEN syndromes. Although not transmitted in the germline, McCune-Albright syndrome is a genetic disorder characterized by endocrine neoplastic features involving endocrine glands that overlap with those involved in MEN1 or MEN2.
The most common hamartomas occur in the lungs. About 5–8% of all solitary lung nodules, about 75% of all benign lung tumors, are hamartomas. They almost always arise from connective tissue and are generally formed of cartilage, connective tissue, and fat cells, although they may include many other types of cells. The great majority of them form in the connective tissue on the outside of the lungs, although about 10% form deep in the linings of the bronchi. They can be worrisome, especially if situated deep in the lung, as it is sometimes difficult to make the important distinction between a hamartoma and a lung malignancy. An X-ray will often not provide a definitive diagnosis, and even a CT scan may be insufficient if the hamartoma lacks the typical cartilage and fat cells. Lung hamartomas may have popcorn-like calcifications on chest xray or computed tomography (CT scan).
Lung hamartomas are more common in men than in women, and may present additional difficulties in smokers.
Some lung hamartomas can compress surrounding lung tissue to a degree, but this is generally not debilitating and is often asymptomatic, especially for the more common peripheral growths. They are treated, if at all, by surgical resection, with an excellent prognosis: generally, the only real danger is the inherent possibility of surgical complications.
Pituitary tumors occur in 15 to 42% of MEN 1 patients. From 25 to 90% are prolactinomas. About 25% of pituitary tumors secrete growth hormone or growth hormone and prolactin. Excess prolactin may cause galactorrhea (see Pituitary Disorders: Galactorrhea), and excess growth hormone causes acromegaly clinically indistinguishable from sporadically occurring acromegaly. About 3% of tumors secrete ACTH, producing Cushing's disease. Most of the remainder are nonfunctional. Local tumor expansion may cause visual disturbance, headache, and hypopituitarism. Pituitary tumors in MEN 1 patients appear to be larger and behave more aggressively than sporadic pituitary tumors.
Multiple familial trichoepithelioma (also known as Brooke–Spiegler syndrome and epithelioma adenoides cysticum) is a cutaneous condition characterized by multiple cystic and solid nodules appearing on the face.
Multiple endocrine neoplasia type 2 (MEN2) (also known as "Pheochromocytoma and amyloid producing medullary thyroid carcinoma", "PTC syndrome," and "Sipple syndrome") is a group of medical disorders associated with tumors of the endocrine system. The tumors may be benign or malignant (cancer). They generally occur in endocrine organs (e.g. thyroid, parathyroid, and adrenals), but may also occur in endocrine tissues of organs not classically thought of as endocrine.
MEN2 is a sub-type of MEN (multiple endocrine neoplasia) and itself has sub-types, as discussed below.
Some or all of the following may be seen in someone with Gorlin syndrome:
1. Multiple basal-cell carcinomas of the skin
2. Keratocystic odontogenic tumor: Seen in 75% of patients and is the most common finding. There are usually multiple lesions found in the mandible. They occur at a young age (19 yrs average).
3. Rib and vertebrae anomalies
4. Intracranial calcification
5. Skeletal abnormalities: bifid ribs, kyphoscoliosis, early calcification of falx cerebri (diagnosed with AP radiograph)
6. Distinct faces: frontal and temporoparietal bossing, hypertelorism, and mandibular prognathism
7. Bilateral ovarian fibromas
8. 10% develop cardiac fibromas
Choristomas, forms of heterotopia, are closely related benign tumors, found in abnormal locations.
It is different from hamartoma. The two can be differentiated as follows: a hamartoma is disorganized overgrowth of tissues in their normal location, (eg, Peutz-Jeghers polyps) while a choristoma is normal tissue growth in an abnormal location (e.g., gastric tissue located in distal ileum in Meckel diverticulum).
The classification of this syndrome is difficult. Three conditions are known to be caused by mutations in the" CYLD" gene: Brooke-Spiegler syndrome, multiple familial trichoepithelioma, and familial cylindromatosis. Clinically, these are distinct, but appear to arise from mutations in the same gene.
Types include:
Neurocristopathy is a diverse class of pathologies that may arise from defects in the development of tissues containing cells commonly derived from the embryonic neural crest cell lineage. The term was coined by Robert P. Bolande in 1974.
Accepted examples are piebaldism, Waardenburg syndrome, Hirschsprung disease, Ondine's curse (congenital central hypoventilation syndrome), pheochromocytoma, paraganglioma, Merkel cell carcinoma, multiple endocrine neoplasia, neurofibromatosis type I, CHARGE syndrome, familial dysautonomia, DiGeorge syndrome, Axenfeld-Rieger syndrome, Goldenhar syndrome (a.k.a. hemifacial microsomia), craniofrontonasal syndrome, congenital melanocytic nevus, melanoma, and certain congenital heart defects of the outflow tract, in particular.
Multiple sclerosis has also been suggested as being neurocristopathic in origin.
The usefulness of the definition resides in its ability to refer to a potentially common etiological factor for certain neoplasms and/or congenital malformation associations that are otherwise difficult to group with other means of nosology.
Juvenile polyposis syndrome is a syndrome characterized by the appearance of multiple juvenile polyps in the gastrointestinal tract. Polyps are abnormal growths arising from a mucous membrane. These usually begin appearing before age 20, but the term "juvenile" refers to the type of polyp, not to the age of the affected person. While the majority of the polyps found in Juvenile Polyposis Syndrome are non-neoplastic, hamartomatous, self-limiting and benign, there is an increased risk of adenocarcinoma.
Solitary juvenile polyps most commonly occur in the rectum and present with rectal bleeding. The World Health Organization criteria for diagnosis of juvenile polyposis syndrome are one of either:
1. More than five juvenile polyps in the colon or rectum; or
2. Juvenile polyps throughout the gastrointestinal tract; or
3. Any number of juvenile polyps in a person with a family history of juvenile polyposis.
AMS has been described by multiple authors and institutions, and various definitions have been adopted. According to Newton et al., a scoring system allotting one point per feature establishes AMS with scores greater than or equal to 3. The features include: 1) two or more clinically atypical nevi, 2) more than 100 nevi in patients between 20 and 50 years of age, 3) more than 50 nevi in patients under 20 years of age or more than 50 years of age, 4) more than one nevus in buttocks or instep, 5) nevi on the anterior scalp, 6) one or more pigmented lesions in the iris.
The Classical (1990) definition uses the following criteria: 1) 100 or more melanocytic nevi, 2) one or more melanocytic nevi greater than or equal to 8mm in its largest diameter, and 3) one or more clinically atypical melanocytic nevi.
The National Institutes of Health (NIH) Consensus 1992 definition, which is still controversial, requires a family history of melanoma, in addition to a large number of melanocytic nevi (often greater than 50) and melanocytic nevi that present certain histological features.
In 1820 Norris reported the first case of what is now recognized as FAMMM (12). He described a 59-year-old man with melanoma, a high total body mole count, and family history of the same.