Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The majority of tympanic membrane retractions do not cause any symptoms. Some cause hearing loss by restricting sound-induced vibrations of the eardrum. Permanent conductive hearing loss can be caused by erosion of the ossicles (hearing bones). Discharge from the ear often indicates that the retraction pocket has developed into a cholesteatoma.
In general one ear will be somewhat worse than the other due to the prevailing wind direction of the area surfed or the side that most often strikes the wave first.
- Decreased hearing or hearing loss, temporary or ongoing
- Increased prevalence of ear infections, causing ear pain
- Difficulty evacuating debris or water from the ear causing a plugging sensation
Superior canal (SCD) can affect both hearing and balance to different extents in different people.
Symptoms of SCDS include:
- Autophony – person's own speech or other self-generated noises (e.g. heartbeat, eye movements, creaking joints, chewing) are heard unusually loudly in the affected ear
- Dizziness/ vertigo/ chronic disequilibrium caused by the dysfunction of the superior semicircular canal
- Tullio phenomenon – sound-induced vertigo, disequilibrium or dizziness, nystagmus and oscillopsia
- Pulse-synchronous oscillopsia
- Hyperacusis – the over-sensitivity to sound
- Low-frequency conductive hearing loss
- A feeling of fullness in the affected ear
- Pulsatile tinnitus
- Brain fog
- Fatigue
- Headache/migraine
- Tinnitus – high pitched ringing in the ear
There are four grades of microtia:
- Grade I: A less than complete development of the external ear with identifiable structures and a small but present external ear canal
- Grade II: A partially developed ear (usually the top portion is underdeveloped) with a closed [stenotic] external ear canal producing a conductive hearing loss.
- Grade III: Absence of the external ear with a small peanut-like vestige structure and an absence of the external ear canal and ear drum. Grade III microtia is the most common form of microtia.
- Grade IV: Absence of the total ear or anotia.
Tympanic membrane retraction describes a condition in which a part of the eardrum lies deeper within the ear than its normal position.
The eardrum comprises two parts, the pars tensa, which is the main part of the eardrum, and the pars flaccida, which is a smaller part of the eardrum located above the pars tensa. Either or both of these parts may become retracted. The retracted segment of eardrum is often known as a retraction pocket. The terms "atelectasis" or sometimes "adhesive otitis media" can be used to describe retraction of a large area of the pars tensa.
Tympanic membrane retraction is fairly common and has been observed in one quarter of a population of British school children. Retraction of both eardrums is less common than having a retraction in just one ear. It is more common in children with cleft palate. Tympanic membrane retraction also occurs in adults.
Attempts have been made to categorise the extent of tympanic membrane retraction though the validity of these classifications is limited.
The goal of medical intervention is to provide the best form and function to the underdeveloped ear.
The majority (98%) of patients with cholesteatoma have ear discharge or hearing loss or both in the affected ear.
Other more common conditions, such as otitis externa, may also present with these symptoms, but cholesteatoma is much more serious and should not be overlooked. If a patient presents to a doctor with ear discharge and hearing loss, the doctor should consider the patient to have cholesteatoma until the disease is definitely excluded.
Other less common symptoms (all less than 15%) of cholesteatoma may include: pain, balance disruption, tinnitus, ear ache, headaches and bleeding from the ear. There can also be facial nerve weakness.
Balance symptoms in the presence of a cholesteatoma raises the possibility that the cholesteatoma is eroding the balance organs, which form part of the inner ear.
On initial inspection, an ear canal full of discharge may be all that is visible. Until the doctor has cleaned the ear and inspected the entire tympanic membrane, cholesteatoma cannot be either confirmed or excluded.
Once the debris is cleared, cholesteatoma can give rise to a number of appearances. If there is significant inflammation, the tympanic membrane may be partially obscured by an aural polyp. If there is less inflammation, the cholesteatoma may present the appearance of 'semolina' discharging from a defect in the tympanic membrane. The posterior and superior parts of the tympanic membrane are most commonly affected. If the cholesteatoma has been dry, the cholesteatoma may present the appearance of 'wax over the attic'. The attic is just above the ear drum.
The patient may commonly also have clinical signs of conductive hearing loss. Less frequently, there may be signs of imbalance or facial weakness.
If untreated, a cholesteatoma can eat into the three small bones located in the middle ear (the malleus, incus and stapes, collectively called ossicles), which can result in nerve deterioration, deafness, imbalance and vertigo. It can also affect and erode, through the enzymes it produces, the thin bone structure that isolates the top of the ear from the brain, as well as lay the covering of the brain open to infection with serious complications (rarely even death due to brain abscess and septicemia).
Both the acquired as well as the congenital types of the disease can affect the facial nerve that extends from the brain to the face and passes through the inner and middle ear and leaves at the anterior tip of the mastoid bone, and then rises to the front of the ear and extends into the upper and lower face.
Conductive hearing loss makes all sounds seem faint or muffled. The hearing loss is worse in low frequencies.
Congenital conductive hearing loss is usually identified through newborn hearing screening or may be identified because the baby has microtia or other facial abnormalities. Conductive hearing loss developing during childhood is usually due to otitis media with effusion and may present with speech and language delay or difficulty hearing. Later onset of conductive hearing loss may have an obvious cause such as an ear infection, trauma or upper respiratory tract infection or may have an insidious onset related to chronic middle ear disease, otosclerosis or a tumour of the naso-pharynx. Earwax is a very common cause of a conductive hearing loss which may present suddenly when water gets behind the wax and this blocks the ear canal.
Prominent ear, otapostasis or bat ear is an abnormally protruding human ear. It may be unilateral or bilateral. The concha is large with poorly developed antihelix and scapha. It is the result of malformation of cartilage during primitive ear development in intrauterine life. The deformity can be corrected anytime after 6 years. The surgery is preferably done at the earliest in order to avoid psychological distress. Correction by otoplasty involves changing the shape of the ear cartilage so that the ear is brought closer to the side of the head. The skin is not removed, but the shape of the cartilage is altered. The surgery does not affect hearing. It is done for cosmetic purposes only. The complications of the surgery, though rare, are keloid formation, hematoma formation, infection and asymmetry between the ears.
"20% to 40% of children with microtia/anotia will have additional defects that could suggest a syndrome."
Treacher-Collins Syndrome: (TCS) A congenital disorder caused by a defective protein known as treacle, and is characterized by craniofacial deformities; malformed or absent ears are also seen in this syndrome. The effects may be mild, undiagnosed to severe, leading to death. Because the ear defects are much different in this disorder and not only affect the outer ear, but the middle ear as well, reconstructive surgery may not help with the child's hearing and in this case a Bone Anchored Hearing Aid would be best. BAHA will only work, however if the inner ear and nerve are intact.
Goldenhar Syndrome: A rare congenital birth defect that causes abnormalities of facial development. also known as Oculoauricular Dysplasia. The facial anomalies include underdeveloped, asymmetric half of the face. The defect is capable of affecting tissue, muscle, and the underlying bone structure of the side of the face with the abnormality.
Ablepharon-macrostomia Syndrome: (AMS) A rare genetic disorder characterized by various physical anomalies which affect the craniofacial area, the skin, the fingers, and the genitals.
Fluid accumulation is the most common cause of conductive hearing loss in the middle ear, especially in children. Major causes are ear infections or conditions that block the eustachian tube, such as allergies or tumors. Blocking of the eustachian tube leads to decreased pressure in the middle ear relative to the external ear, and this causes decreased motion of both the ossicles and the tympanic membrane.
- acute or serous otitis media
- otitis media with effusion or 'glue ear'
- Perforated eardrum
- Chronic suppurative otitis media (CSOM)
- Cholesteatoma
- Otosclerosis, abnormal growth of bone in or near the middle ear
- middle ear tumour
- ossicular discontinuity as a consequence of infection or temporal bone trauma
- Congenital malformation of the ossicles. This can be an isolated phenomenon or can occur as part of a syndrome where development of the 1st and 2nd branchial arches is seen such as in Goldenhar syndrome, Treacher Collins syndrome, branchio-oto-renal syndrome etc.
- Barotrauma unequal air pressures in the external and middle ear. This can temporarily occur, for example, by the environmental pressure changes as when shifting altitude, or inside a train going into a tunnel. It is managed by any of various methods of ear clearing manoeuvres to equalize the pressures, like swallowing, yawning, or the Valsalva manoeuvre. More severe barotrauma can lead to middle ear fluid or even permanent sensorineural hearing loss.
Anotia ("no ear") describes a rare congenital deformity that involves the complete absence of the pinna, the outer projected portion of the ear, and narrowing or absence of the ear canal. This contrasts with microtia, in which a small part of the pinna is present. Anotia and microtia may occur unilaterally (only one ear affected) or bilaterally (both ears affected). This deformity results in conductive hearing loss, deafness.
Surfer's ear is the common name for an exostosis or abnormal bone growth within the ear canal. Surfer's ear is not the same as swimmer's ear, although infection can result as a side effect.
Irritation from cold wind and water exposure causes the bone surrounding the ear canal to develop lumps of new bony growth which constrict the ear canal. Where the ear canal is actually blocked by this condition, water and wax can become trapped and give rise to infection. The condition is so named due to its prevalence among cold water surfers. Warm water surfers are also at risk for exostosis due to the evaporative cooling caused by wind and the presence of water in the ear canal.
Most avid surfers have at least some mild bone growths (exostoses), causing little to no problems. The condition is progressive, making it important to take preventative measures early, preferably whenever surfing.
The condition is not limited to surfing and can occur in any activity with cold, wet, windy conditions such as windsurfing, kayaking, sailing, jet skiing, kitesurfing, and diving.
This is an inherited disease. The primary form of hearing loss in otosclerosis is conductive hearing loss (CHL) whereby sounds reach the ear drum but are incompletely transferred via the ossicular chain in the middle ear, and thus partly fail to reach the inner ear (cochlea). This usually will begin in one ear but will eventually affect both ears with a variable course. On audiometry, the hearing loss is characteristically low-frequency, with higher frequencies being affected later.
Sensorineural hearing loss (SNHL) has also been noted in patients with otosclerosis; this is usually a high-frequency loss, and usually manifests late in the disease. The causal link between otosclerosis and SNHL remains controversial. Over the past century, leading otologists and neurotologic researchers have argued whether the finding of SNHL late in the course of otosclerosis is due to otosclerosis or simply to typical presbycusis.
Most patients with otosclerosis notice tinnitus (head noise) to some degree. The amount of tinnitus is not necessarily related to the degree or type of hearing impairment. Tinnitus develops due to irritation of the delicate nerve endings in the inner ear. Since the nerve carries sound, this irritation is manifested as ringing, roaring or buzzing. It is usually worse when the patient is fatigued, nervous or in a quiet environment.
Individuals with Treacher Collins syndrome often have both cleft palate and hearing loss, in addition to other disabilities. Hearing loss is often secondary to absent, small, or unusually formed ears (microtia), and commonly results from malformations of the middle ear. Researchers have found that most patients with Treacher Collins syndrome have symmetric external ear canal abnormalities and symmetrically dysmorphic or absent ossicles in the middle ear space. Inner ear structure is largely normal. Most patients show a moderate hearing impairment or greater, and the type of loss is generally a conductive hearing loss. Patients with Treacher Collins syndrome exhibit hearing losses similar to those of patients with malformed or missing ossicles (Pron "et al.", 1993).
Although large vestibular aqueducts are a congenital condition, hearing loss may not be present from birth. Age of diagnosis ranges from infancy to adulthood, and symptoms include fluctuating and sometimes progressive sensorineural hearing loss and disequilibrium.
The vestibular aqueduct acts as a canal between the inner ear and the cranial cavity. Running through it is a tube called the endolymphatic duct, which normally carries a fluid called endolymph from the inner ear to the endolymphatic sac in the cranial cavity. When the endolymphatic duct and sac are larger than normal, as is the case in large vestibular aqueduct syndrome, endolymph is allowed to travel back from the endolymphatic sac into the inner ear. This often results fluctuations in hearing levels. Enlarged vestibular aqueducts often occur with other inner ear development problems, such as cochlear deformities. Enlarged vestibular aqueducts are part of the classic Mondini deformity. Enlarged vestibular aqueducts with enlarged endolymphatic sacs occur in Pendred syndrome which is caused by a defect on chromosome 7q31.. Enlarged vestibular aqueducts can also occur in Branchio-oto-renal syndrome, CHARGE syndrome and Renal Tubular Acidosis.
Enlarged vestibular aqueducts can be bilateral or unilateral.
Hearing loss caused by large vestibular aqueduct syndrome is not inevitable, although people with the syndrome are at a much higher risk of developing hearing loss than the general population. Hearing loss is very likely.
Persons with Pierre Robin sequence (PRS) are at greater risk for hearing impairment than persons with cleft lip and/or palate without PRS. One study showed an average of 83% hearing loss in PRS, compared to 60% in cleft individuals without PRS (Handzic "et al.", 1995). Similarly, PRS individuals typically exhibit conductive, bilateral hearing losses that are greater in degree than in cleft individuals without PRS. Middle ear effusion is generally apparent, with no middle ear or inner ear malformations. Accordingly, management by ear tubes (myringotomy tubes) is often effective and may restore normal levels of hearing (Handzic "et al.", 1995).
PLF is a cause of dizziness, imbalance, and hearing loss—any or all of these symptoms can exist. Vertigo (an illusion of motion) is not common in this disorder. The most common cause of this fistula is head or ear trauma. Rapid increases of intracranial pressure can also result in a PLF. Rarely, these fistulas can be congenital, leading to progressive hearing loss and vertigo in childhood. It has also been a complication of a stapedectomy.
Cholesteatomas occur in two basic classifications: Acquired cholesteatomas, which are more common, are usually caused by pathological alteration of the ear drum leading to accumulation of keratin within the middle ear. Congenital cholesteatomas are usually middle ear epidermal cysts that are identified deep within an intact ear drum.
In aviation and underwater diving, alternobaric vertigo is dizziness resulting from unequal pressures being exerted between the ears due to one Eustachian tube being less patent than the other.
Preauricular sinuses and cysts result from developmental defects of the first and second pharyngeal arches. This and other congenital ear malformations are sometimes associated with renal anomalies. They may be present in Beckwith–Wiedemann syndrome, and in rare cases, they may be associated with branchio-oto-renal syndrome.
Ear disease is a subfield of otolaryngology addressing the pathology of the ear.
Two of the major categories are otitis and hearing disorders. However, not all hearing disorders are due to structures of the ear.
Otosclerosis or otospongiosis is an abnormal growth of bone near the middle ear. It can result in hearing loss. The term otosclerosis is something of a misnomer. Much of the clinical course is characterised by lucent rather than sclerotic bony changes, hence it is also known as otospongiosis.
Superior canal dehiscence syndrome (SCDS) is a set of hearing and balance symptoms, related to a rare medical condition of the inner ear, known as "superior canal dehiscence". The symptoms are caused by a thinning or complete absence of the part of the temporal bone overlying the superior semicircular canal of the vestibular system. There is evidence that this rare defect, or susceptibility, is congenital. There are also numerous cases of symptoms arising after physical trauma to the head. It was first described in 1998 by Lloyd B. Minor of Johns Hopkins University in Baltimore.