Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Signs and symptoms are mainly due to secondary increased intracranial pressure due to blockage of the fourth ventricle and are usually present for 1 to 5 months before diagnosis is made. The child typically becomes listless, with repeated episodes of vomiting, and a morning headache, which may lead to a misdiagnosis of gastrointestinal disease or migraine. Soon after, the child will develop a stumbling gait, truncal ataxia, frequent falls, diplopia, papilledema, and sixth cranial nerve palsy. Positional dizziness and nystagmus are also frequent, and facial sensory loss or motor weakness may be present. Decerebrate attacks appear late in the disease.
Extraneural metastasis to the rest of the body is rare, and when it occurs, it is in the setting of relapse, more commonly in the era prior to routine chemotherapy.
Source:
- severe headache
- visual loss (due to papilledema)
- vomiting
- bilateral Babinski sign
- drowsiness (after several hours of the above symptoms)
- gait change (rotation of feet when walking)
- impaction/constipation
- back flexibility
There is a wide range of symptoms that patients show. Symptoms can lie dormant, but come about due to Obstructive hydrocephalus. These symptoms include:
- Intracranial pressure
- Headache
- Papilledema
- Vomiting
- Light headedness
- Impaired mental activity
- Gait instability
In rare and extreme cases, more severe symptoms can be observed:
- Memory disturbance
- Dementia
- Hemiparesis
- Seizures
- Hemorrhage
- Psychosis
Pediatric ependymomas are similar in nature to the adult form of ependymoma in that they are thought to arise from radial glial cells lining the ventricular system. However, they differ from adult ependymomas in which genes and chromosomes are most often affected, the region of the brain they are most frequently found in, and the prognosis of the patients. Children with certain hereditary diseases, such as neurofibromatosis type II (NF2), have been found to be more frequently afflicted with this class of tumors, but a firm genetic link remains to be established. Symptoms associated with the development of pediatric ependymomas are varied, much like symptoms for a number of other pediatric brain tumors including vomiting, headache, irritability, lethargy, and changes in gait. Although younger children and children with invasive tumor types generally experience less favorable outcomes, total removal of the tumors is the most conspicuous prognostic factor for both survival and relapse.
Ependymoma is a tumor that arises from the ependyma, a tissue of the central nervous system. Usually, in pediatric cases the location is intracranial, while in adults it is spinal. The common location of intracranial ependymoma is the fourth ventricle. Rarely, ependymoma can occur in the pelvic cavity.
Syringomyelia can be caused by an ependymoma.
Ependymomas are also seen with neurofibromatosis type II.
Medulloblastoma () is the most common type of pediatric malignant primary brain tumor (cancer), originating in the part of the brain that is towards the back and the bottom, on the floor of the skull, in the cerebellum, or posterior fossa.
The brain is divided into two main parts, the larger cerebrum on top and the smaller cerebellum below towards the back. They are separated by a membrane called the tentorium. Tumors that originate in the cerebellum or the surrounding region below the tentorium are, therefore, called infratentorial.
Historically medulloblastomas have been classified as a primitive neuroectodermal tumor (PNET), but it is now known that medulloblastoma is distinct from supratentorial PNETs and are no longer considered similar entities.
Medulloblastomas are noninvasive, rapidly growing tumors that, unlike most brain tumors, spread through the cerebrospinal fluid and frequently metastasize to different locations along the surface of the brain and spinal cord. Metastasis all the way down to the cauda equina at the base of the spinal cord is termed "drop metastasis".
The cumulative relative survival rate for all age groups and histology follow-up was 60%, 52%, and 32% at 5 years, 10 years, and 20 years, respectively, with children doing better than adults.
The desire to eat normally becomes worse over time, leading to weight loss from vomiting. Nausea is seen in almost all cases of astroblastoma, especially in low-grade tumors.
Central neurocytoma, abbreviated CNC, is an extremely rare, ordinarily benign intraventricular brain tumour that typically forms from the neuronal cells of the septum pellucidum. The majority of central neurocytomas grow inwards into the ventricular system forming interventricular neurocytomas. This leads to two primary symptoms of CNCs, blurred vision and increased intracranial pressure. Treatment for a central neurocytoma typically involves surgical removal, with an approximate 1 in 5 chance of recurrence. Central neurocytomas are classified as a grade II tumor under the World Health Organization's classification of tumors of the nervous system.
Along with cranial pressure, patients exhibit noticeable lethargy, increasing in severity as the tumor progresses. In the first few months, morning activities are usually unaffected; over time, these effects become more pronounced, especially late at night. Lethargy can disrupt vital signs, depleting energy and desire to perform simple cognitive tasks.
Gangliogliomas are generally benign WHO grade I tumors; the presence of anaplastic changes in the glial component is considered to represent WHO grade III (anaplastic ganglioglioma). Criteria for WHO grade II have been suggested, but are not established. Malignant transformation of spinal ganglioglioma has been seen in only a select few cases. Poor prognostic factors for adults with gangliogliomas include older age at diagnosis, male sex, and malignant histologic features.
The most common symptom of the papillary tumor is a headache. Because headaches are so common, most people think nothing of it. This is why brain tumors are so dangerous. There are not a lot of symptoms that go along with them so people tend to wait a long time before seeking medical help. Most of the time people will go see a doctor when their headaches become consistent and start to never go away. This symptom however occurs secondary to hydrocephalus, which is a result from compression of the cerebral aqueduct. The cerebral aqueduct is a narrow channel in the midbrain, which connects the third and fourth ventricles. When a tumor blocks the pathway of the cerebrospinal fluid, this will cause headaches in the patient. Often when hydrocephalus occurs, a shunt is put in place in order to alleviate the pressure. In one case study, an endoscopic third ventriculostomy was performed as a first line procedure to treat the hydrocephalus and also for diagnostic purposes.
In some cases, patients have had progressive diplopia, or double vision. Also, although not in all cases, patients sometimes suffer from nausea and vomiting.
Symptoms present 1–36 months before diagnosis, and can vary depending on age, tumor grade, and location. Increased intracranial pressure can induce vomiting, headache, irritability, lethargy, changes in gait, and in children less than 2, feeding problems, involuntary eye movements, and hydrocephalus are often noticeable. Seizures occur in about 20% of pediatric patients. Loss of cognitive function and even sudden death could occur if the tumor is located at a crucial location for CSF flow. Pediatric ependymomas most often occur in the posterior cranial fossa, in contrast with adult ependymomas which usually occur along the spine. Ependymomas present as low-density masses on CT scans, and are hyperintense on T2-weighted MRI images.
Ganglioglioma is a rare, slow-growing primary central nervous system (CNS) tumor which most frequently occurs in the temporal lobes of children and young adults.
Papillary tumors of the pineal region (PTPR) were first described by A. Jouvet et al. in 2003 and were introduced in the World Health Organization (WHO) classification of Central Nervous System (CNS) in 2007. Papillary Tumors of the Pineal Region are located on the pineal gland which is located in the center of the brain. The pineal gland is located on roof of the diencephalon. It is a cone shaped structure dorsal to the midbrain tectum. The tumor appears to be derived from the specialized ependymal cells of the subcommissural organ. Papillary tumors of the central nervous system and particularly of the pineal region are very rare and so diagnosing them is extremely difficult.
An ependymal tumor is a type of brain tumor that begins in cells lining the spinal cord central canal (fluid-filled space down the center) or the ventricles (fluid-filled spaces of the brain). Ependymal tumors may also form in the choroid plexus (tissue in the ventricles that makes cerebrospinal fluid). Also called ependymoma.
SCT is seen in 1 in every 35,000 live births, and is the most common tumor presenting in newborn humans. Most SCTs are found in babies and children, but SCTs have been reported in adults and the increasingly routine use of prenatal ultrasound exams has dramatically increased the number of diagnosed SCTs presenting in fetuses. Like other teratomas, an SCT can grow very large. Unlike other teratomas, an SCT sometimes grows larger than the rest of the fetus.
Sacrococcygeal teratomas are the most common type of germ cell tumors (both benign and malignant) diagnosed in neonates, infants, and children younger than 4 years. SCTs occur more often in girls than in boys; ratios of 3:1 to 4:1 have been reported.
Historically, sacrococcygeal teratomas present in 2 clinical patterns related to the child’s age, tumor location, and likelihood of tumor malignancy. With the advent of routine prenatal ultrasound examinations, a third clinical pattern is emerging.
- Fetal tumors present during prenatal ultrasound exams, with or without maternal symptoms. SCTs found during routine exams tend to be small and partly or entirely external. The internal SCTs are not easily seen via ultrasound, unless they are large enough to reveal their presence by the abnormal position of the fetal urinary bladder and other organs, but large fetal SCTs frequently produce maternal complications which necessitate non-routine, investigative ultrasounds.
- Neonatal tumors present at birth protruding from the sacral site and are usually mature or immature teratomas.
- Among infants and young children, the tumor presents as a palpable mass in the sacropelvic region compressing the bladder or rectum. These pelvic tumors have a greater likelihood of being malignant. An early survey found that the rate of tumor malignancy was 48% for girls and 67% for boys older than 2 months at the time of sacrococcygeal tumor diagnosis, compared with a malignant tumor incidence of 7% for girls and 10% for boys younger than 2 months at the time of diagnosis. The pelvic site of the primary tumor has been reported to be an adverse prognostic factor, most likely caused by a higher rate of incomplete resection.
- In older children and adults, the tumor may be mistaken for a pilonidal sinus, or it may be found during a rectal exam or other evaluation.
During prenatal ultrasound, an SCT having an external component may appear as a fluid-filled cyst or a solid mass sticking out from the fetus' body. Fetal SCTs that are entirely internal may be undetected if they are small; detection (or at least suspicion) is possible when the fetal bladder is seen in an abnormal position, due to the SCT pushing other organs out of place.
At birth, the usual presentation is a visible lump or mass under the skin at the top of the buttocks crease. If not visible, it can sometimes be felt; gently prodded, it feels somewhat like a hardboiled egg. A small SCT, if it is entirely inside the body, may not present for years, until it grows large enough to cause pain, constipation and other symptoms of a large mass inside the pelvis, or until it begins to extend out of the pelvis. Even a relatively large SCT may be missed, if it is internal, because the bony pelvis conceals and protects it. Mediastinal tumors, including teratomas, are similarly concealed and protected by the rib cage.
Some SCTs are discovered when a child begins to talk at about age 2 years and complains of their bottom hurting or feeling "poopy" when they ride in a car seat.
Other tumors can occur in the sacrococcygeal and/or presacral regions and hence must be ruled out to obtain a differential diagnosis. These include extraspinal ependymoma, ependymoblastoma, neuroblastoma and rhabdomyosarcoma.
Smaller SCTs with an external component, seen in prenatal ultrasounds or at birth, often are mistaken for spina bifida. Cystic SCT and terminal myelocystocele are especially difficult to distinguish; for more accurate diagnosis, MRI has been recommended.
A mammary tumor is a neoplasm originating in the mammary gland. It is a common finding in older female dogs and cats that are not spayed, but they are found in other animals as well. The mammary glands in dogs and cats are associated with their nipples and extend from the underside of the chest to the groin on both sides of the midline. There are many differences between mammary tumors in animals and breast cancer in humans, including tumor type, malignancy, and treatment options. The prevalence in dogs is about three times that of women. In dogs, mammary tumors are the second most common tumor (after skin tumors) over all and the most common tumor in female dogs with a reported incidence of 3.4%. Multiple studies have documented that spaying female dogs when young greatly decreases their risk of developing mammary neoplasia when aged. Compared with female dogs left intact, those spayed before puberty have 0.5% of the risk, those spayed after one estrous cycle have 8.0% of the risk, and dogs spayed after two estrous cycles have 26.0% of the risk of developing mammary neoplasia later in life. Overall, unspayed female dogs have a seven times greater risk of developing mammary neoplasia than do those that are spayed. While the benefit of spaying decreases with each estrous cycle, some benefit has been demonstrated in female dogs even up to 9 years of age. There is a much lower risk (about 1 percent) in male dogs and a risk in cats about half that of dogs.
The exact causes for the development of canine mammary tumors are not fully understood. However, hormones of the estrous cycle seem to be involved. Female dogs who are not spayed or who are spayed later than the first heat cycle are more likely to develop mammary tumors. Dogs have an overall reported incidence of mammary tumors of 3.4 percent. Dogs spayed before their first heat have 0.5 percent of this risk, and dogs spayed after just one heat cycle have 8 percent of this risk. The tumors are often multiple. The average age of dogs with mammary tumors is ten to eleven years old. Obesity at one year of age and eating red meat have also been associated with an increased risk for these tumors, as has the feeding of high fat homemade diets.
There are several hypotheses on the molecular mechanisms involved in the development of canine mammary tumors but a specific genetic mutation has not been identified.
The term multiple endocrine neoplasia (MEN) encompasses several distinct syndromes featuring tumors of endocrine glands, each with its own characteristic pattern. In some cases, the tumors are malignant, in others, benign. Benign or malignant tumors of nonendocrine tissues occur as components of some of these tumor syndromes.
MEN syndromes are inherited as autosomal dominant disorders.
Lewis lung carcinoma is a tumor discovered by Dr. Margaret R. Lewis of the Wistar Institute in 1951. This tumor originated spontaneously as a carcinoma of the lung of a C57BL mouse. The tumor does not appear to be grossly hemorrhagic and the majority of the tumor tissue is a semifirm homogeneous mass. It is also called 3LL and LLC and is used as a transplantable malignancy. It has been used in many studies.
In 1975, Munson discovered that cannabinoids suppress Lewis lung carcinoma cell growth. The mechanism of this action was shown to be inhibition of DNA synthesis Cannabinoids increase the life span of mice carrying Lewis lung tumors and decrease primary tumor size. There are multiple modes of action.
Costello syndrome, also called faciocutaneoskeletal syndrome or FCS syndrome, is a rare genetic disorder that affects many parts of the body. It is characterized by delayed development and delayed mental progression, distinctive facial features, unusually flexible joints, and loose folds of extra skin, especially on the hands and feet. Heart abnormalities are common, including a very fast heartbeat (tachycardia), structural heart defects, and overgrowth of the heart muscle (hypertrophic cardiomyopathy). Infants with Costello syndrome may be large at birth, but grow more slowly than other children and have difficulty feeding. Later in life, people with this condition have relatively short stature and many have reduced levels of growth hormones. It is a RASopathy.
Beginning in early childhood, people with Costello syndrome have an increased risk of developing certain cancerous and noncancerous tumors. Small growths called papillomas are the most common noncancerous tumors seen with this condition. They usually develop around the nose and mouth or near the anus. The most frequent cancerous tumor associated with Costello syndrome is a soft tissue tumor called a rhabdomyosarcoma. Other cancers also have been reported in children and adolescents with this disorder, including a tumor that arises in developing nerve cells (neuroblastoma) and a form of bladder cancer (transitional cell carcinoma).
Costello Syndrome was discovered by Dr Jack Costello, a New Zealand Paediatrician in 1977. He is credited with first reporting the syndrome in the Australian Paediatric Journal, Volume 13, No.2 in 1977.
The older names, "multiple endocrine adenomas" and "multiple endocrine adenomatosis" (MEA), have been replaced by the current terminology.
The term multiple endocrine neoplasia is used when two or more endocrine tumor types, known to occur as a part of one of the defined MEN syndromes, occurs in a single patient and there is evidence for either a causative mutation or hereditary transmission. The presence of two or more tumor types in a single patient does not automatically designate that individual as having MEN because there is a small statistical chance that development of two "sporadic" tumors that occur in one of the MEN syndromes could occur by chance.
The term "multiple endocrine neoplasia" was introduced in 1968, but descriptions of the condition date back to 1903.
These are pleomorphic and include
- dolichocephaly (with or without sagittal suture synostosis)
- microcephaly
- pre- and postnatal growth retardation
- brachydactyly
- narrow thorax
- rhizomelic dwarfism
- epicanthal folds
- hypodontia and/or microdontia
- sparse, slow-growing, hyperpigmented, fine hair
- nail dysplasia
- hypohydrosis
- chronic renal failure
- heart defects
- liver fibrosis
- visual deficits
- photophobia
- hypoplasia of the posterior corpus callosum
- aberrant calcium homeostasis
Electroretinography shows gross abnormalities.
Two fetuses of 19 and 23 weeks gestation have also been reported. They showed acromesomelic shortening, craniofacial characteristics with absence of craniosynostosis, small kidneys with tubular and glomerular microscopic cysts, persistent ductal plate with portal fibrosis in the liver, small adrenals, an enlarged cisterna magna and a posterior fossa cyst.
The most common cancers in children are (childhood) leukemia (32%), brain tumors (18%), and lymphomas (11%). In 2005, 4.1 of every 100,000 young people under 20 years of age in the U.S. were diagnosed with leukemia, and 0.8 per 100,000 died from it. The number of new cases was highest among the 1–4 age group, but the number of deaths was highest among the 10–14 age group.
In 2005, 2.9 of every 100,000 people 0–19 years of age were found to have cancer of the brain or central nervous system, and 0.7 per 100,000 died from it. These cancers were found most often in children between 1 and 4 years of age, but the most deaths occurred among those aged 5–9. The main subtypes of brain and central nervous system tumors in children are: astrocytoma, brain stem glioma, craniopharyngioma, desmoplastic infantile ganglioglioma, ependymoma, high-grade glioma, medulloblastoma and atypical teratoid rhabdoid tumor.
Other, less common childhood cancer types are:
- Neuroblastoma (6%, nervous system)
- Wilms tumor (5%, kidney)
- Non-Hodgkin lymphoma (4%, blood)
- Childhood rhabdomyosarcoma (3%, many sites)
- Retinoblastoma (3%, eye)
- Osteosarcoma (3%, bone cancer)
- Ewing sarcoma (1%, many sites)
- Germ cell tumors (5%, many sites)
- Pleuropulmonary blastoma (lung or pleural cavity)
- Hepatoblastoma and hepatocellular carcinoma (liver cancer)