Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Mesenchymal chondrosarcoma is a form of malignant chondrosarcoma. Unlike most chondrosarcomas, mesenchymal chondrosarcoma grows rapidly, tends to spread, and occurs more often in children and young adults than in older adults.
Type II collagen can help distinguish it from other tumors.
Bone tumors may be classified as "primary tumors", which originate in bone or from bone-derived cells and tissues, and "secondary tumors" which originate in other sites and spread (metastasize) to the skeleton. Carcinomas of the prostate, breasts, lungs, thyroid, and kidneys are the carcinomas that most commonly metastasize to bone. Secondary malignant bone tumors are estimated to be 50 to 100 times as common as primary bone cancers.
A bone tumor (also spelled bone tumour) is a neoplastic growth of tissue in bone. Abnormal growths found in the bone can be either benign (noncancerous) or malignant (cancerous).
Average five-year survival in the United States after being diagnosed with bone and joint cancer is 67%.
Myxoid chondrosarcoma is a type of Chondrosarcoma.
It has been associated with a t(9;22) (q22;q12) EWS/CHN gene fusion.
Bone metastases are a major clinical concern that can cause severe pain, bone fractures, spinal cord compression, hypercalcemia, anemia, spinal instability, decreased mobility, and rapid degradation in the quality of life for patients. Patients have described the pain as a dull ache that grows worse over time, with intermittent periods of sharp, jagged pain. Even under controlled pain management, these periods of breakthrough pain can occur rapidly, without warning, several times a day. Pain may be worse at night and partially relieved by activity. Metastases to weightbearing bones may become symptomatic early in the course of disease as compared to metastases to the flat bones of the rib or sternum.
- Effects of bone metastasis
- severe pain
- bone fractures
- spinal cord compression
- hypercalcemia
- anemia
- spinal instability
- decreased mobility
Physicians grade chondrosarcoma using several criteria, but particularly on how abnormal the cancerous cells appear under the microscope, and the growth rate of the tumors themselves, both of which are directly linked to the propensity of the cancer to invade locally, and to spread widely to distant organs and sites in the body (called metastasis).
Grade 1 chondrosarcoma grows relatively slowly, has cells whose histological appearance is quite similar to cells of normal cartilage, and have much less aggressive invasive and metastatic properties. Grades 2 and 3 are increasingly faster-growing cancers, with more varied and abnormal-looking cells, and are much more likely to infiltrate surrounding tissues, lymph nodes, and organs. Some, but not all, authorities and medical facilities assign a "Grade 4" to the most anaplastic, undifferentiated cartilage-derived tumors.
The most common sites for chondrosarcoma to grow are the pelvis and shoulder, along with the superior metaphyseal and diaphyseal regions of the arms and legs. However, chondrosarcoma may occur in any bone, and are sometimes found in the skull, particularly at its base.
ICD-O codes provide a more precise classification of chondrosarcoma. These "subtypes" are derived from, and reflect, both (a) the topographical location of the tumor, (b) the histological characteristics of the cancerous cartilage cells, and (c) the makeup of the surrounding matrix material associated with the tumor:
Chondrosarcoma is a cancer composed of cells derived from transformed cells that produce cartilage. Chondrosarcoma is a member of a category of tumors of bone and soft tissue known as sarcomas. About 30% of skeletal system cancers are chondrosarcomas. It is resistant to chemotherapy and radiotherapy. Unlike other primary bone cancers that mainly affect children and adolescents, chondrosarcoma can present at any age. It more often affects the axial skeleton than the appendicular skeleton.
Bone metastases, or metastatic bone disease, is a class of cancer metastases that results from primary tumor invasion to bone. Bone-originating primary tumors such as osteosarcoma, chondrosarcoma, and Ewing's sarcoma are rare. Unlike hematological malignancies that originate in the blood and form non-solid tumors, bone metastases generally arise from epithelial tumors and form a solid mass inside the bone. Bone metastases cause severe pain, characterized by a dull, constant ache with periodic spikes of incident pain.
The most common locations are the shaft and epyphises of long bones (fibula and humerus) but the spine, metatarsal bones, and ilium have been involved as well. Radiologic examination evidences osteolytic areas with a lobulated framework comprising radiolucent and radiodense foci admixed to speckled calcification. Cortical destruction is a common finding with no soft tissue expansion in many cases. Histopathology of the lesion shows large areas of mature fibrous stroma undergoing hyaline cartilage metaplasia resulting in conspicuous lobules or gradual transformation into chondroid foci. Both hyaline cartilage and chondroid in turn undergo calcification and endochondral cancellous bone formation mimicking epiphyseal plate-like cartilage.
Differential diagnosis is concerned with fibrocartilaginous dysplasia of bone, desmoplastic fibroma, low-grade fibrosarcoma, chondromyxoid fibroma and low-grade chondrosarcoma.
A full account of imaging findings on radiography, bone scan, CT and magnetic resonance has been provided by Sumner et al.
Fibrocartilaginous mesenchymoma of bone is (FCMB) is an extremely rare tumor first described in 1984. Fewer than 20 cases have been reported, with patient ages spanning from 9 to 25 years, though a case in a male infant aged 1 year and 7 months has been reported. Quick growth and bulky size are remarkable features of this tumor.
Individuals with an enchondroma often have no symptoms at all. The following are the most common symptoms of an enchondroma. However, each individual may experience symptoms differently. Symptoms may include:
- Pain that may occur at the site of the tumor if the tumor is very large, or if the affected bone has weakened causing a fracture of the affected bone
- Enlargement of the affected finger
- Slow bone growth in the affected area
The symptoms of enchondroma may resemble other medical conditions or problems. Always consult your physician for a diagnosis.
Nominally, the disease consists of multiple enchondromas which usually develop in childhood. The growth of these enchondromas usually stops after skeletal maturation. The affected extremity is shortened (asymmetric dwarfism) and sometimes bowed due to epiphyseal fusion anomalies. Persons with Ollier disease are prone to breaking bones and normally have swollen, aching limbs.
Chordomas can arise from bone in the skull base and anywhere along the spine. The two most common locations are cranially at the clivus and in the sacrum at the bottom of the spine.
There are three histological variants of chordoma: classical (or "conventional"), chondroid and dedifferentiated.
- The histological appearance of classical chordoma is of a lobulated tumor composed of groups of cells separated by fibrous septa. The cells have small round nuclei and abundant vacuolated cytoplasm, sometimes described as physaliferous (having bubbles or vacuoles).
- Chondroid chordomas histologically show features of both chordoma and chondrosarcoma.
The afflicted may have relatively small amounts of pain that will quickly increase in severity over a time period of 6–12 weeks. The skin temperature around the bone may increase, a bony swelling may be evident, and movement may be restricted in adjacent joints.
Spinal lesions may cause quadriplegia and patients with skull lesions may have headaches.
Ollier disease is a rare nonhereditary sporadic disorder where intraosseous benign cartilaginous tumors (enchondroma) develop close to growth plate cartilage. Prevalence is estimated at around 1 in 100,000.
An enchondroma is a cartilage cyst found in the bone marrow. Typically, enchondroma is discovered on an X-ray scan. Enchondromas have a characteristic appearance on Magnetic Resonance Imaging (MRI) as well. They have also been reported to cause increased uptake on PET examination.
Aneurysmal bone cyst, abbreviated ABC, is an osteolytic bone neoplasm characterized by several sponge-like blood or serum filled, generally non-endothelialized spaces of various diameters.
The term is a misnomer, as the lesion is neither an aneurysm nor a cyst.
Cartilage tumors form in Cartilage tissue. They can be either benign (Chondroma) or malignant (chondrosarcoma). Frequently these tumors appear in bone, and not in pre-existing cartilage tissue. In some cases tumors that formed in other tissues may produce a cartilage-like matrix, an example of this is the pleomorphic adenoma of the sexual reproduction salivary glands.
Limited normal functions and movements are caused by osteochondromas growing slowly and inwardly. The majority of osteochondromas are symptomless and are found incidentally. Each individual with osteochondroma may experience symptoms differently and most of the time individuals will experience no symptoms at all. Some of the most common symptoms are a hard immobile painless palpable mass, adjacent muscle soreness, and pressure or irritation with heavy exercising.
Major symptoms arise when complications such as fractures, bone deformity or mechanical joint problems occur. If the occurrence of an osteochondroma is near a nerve or a blood vessel, the affected limb can experience numbness, weakness, loss of pulse or color change. Periodic changes in the blood flow can also take place. Approximately 20% of patients experiencing nerve compression commonly acknowledge vascular compression, arterial thrombosis, aneurysm, and pseudoaneurysm. Formation of pseudoaneurysm and venous thrombosis lead to claudication, pain, acute ischemia, and symptoms of phlebitis. If the tumor is found under a tendon, it can cause pain during movement causing restriction of joint motion. Pain can also occur due to bursal inflammation, swelling or fracture at the base of the tumor stalk. Some of the clinical signs and symptoms of malignant osteochondroma are pain, swelling, and mass enlargement.
Osteochondromas are often asymptomatic and may not cause any kind of discomfort. They are often found accidentally when an X-ray is done for an unrelated reason.
- X-rays are the first tests performed that characterize a lesion. They show a clear picture of dense structures of bones, and will also indicate bone growth pertaining to osteochondroma.
- Computed Tomography (CT) scan can identify the bony lesion in great details and show the presence of calcification. These tests also provide great details, especially in soft tissues with the aide of cross-sectional images.
- Magnetic Resonance Imaging (MRI) is the most accurate method for detecting bone masses in symptomatic cases to depict precise morphology of a tumor. It is used to verify if the palpable mass is continuous with the cortex of the affected bone and to differentiate an osteochondroma from other lesions on the surface of the bone. MRI can also be used to look for cartilage on the surface of tumor and can depict any vascular complications caused by the tumor. An MRI can identify tumors of the spinal column and is often used to diagnose low grade osteosarcoma.
- Ultrasound is done if aneurysms or pseudoaneurysms and venous or arterial thrombosis is suspected. Ultrasound is an accurate method for examining the cartilaginous cap of the osteochondroma. It is also a way of pinpointing bursitis. However, it cannot be used to predict if the growth of tumor is inward in regards to the cap.
- Angiography is used to detect vascular lesions caused by osteochondroma due to ossified cartilaginous cap. It is also used to characterize malignant transformation lesions through neovascularity.
- Clinical testing such as sequence analysis can be done of the entire coding regions of both "EXT1" and "EXT2" to detect mutations.
- A biopsy of the tissue sample of the tumor can also be taken to check for cancer.
Tests for osteochondroma can also identify diseases such as secondary peripheral chondrosarcoma and Multiple osteochondromatosis. In large, secondary chondrosarcoma arises at the site of osteochondroma due to increased thickness of the cartilage cap indicating potential malignant transformation. The symptoms of multiple osteochondromatosis are similar to solitary osteochondroma, but they are often more severe. Painless bumps can arise at the site of tumor and pain and other discomforts can also take place if pressure is put on the soft tissues, nerves, or blood vessels. Dysplasia Epiphysealis Hemimelica (DEH) or Trevor's disease and metachondromatosis (MC) are considered differential diagnosis of both solitary and hereditary osteochondromas. DEH is described as a type of over growth at one or more epiphyses. Similar to osteochondroma, DEH is diagnosed prior to 15 years of age and the growth of lesions end at puberty, when the growth plates close. Metachondromatosis is a rare disorder that exhibit symptoms of both multiple osteochondromas and enchondromas in children and is also inherited in autosomal dominant mode.
A sarcoma is a cancer that arises from transformed cells of mesenchymal origin. Thus, malignant tumors made of cancellous bone, cartilage, fat, muscle, vascular, or hematopoietic tissues are, by definition, considered sarcomas. This is in contrast to a malignant tumor originating from epithelial cells, which are termed carcinoma. Human sarcomas are quite rare. Common malignancies, such as breast, colon, and lung cancer, are almost always carcinoma. The term is from the Greek "sarx" meaning "flesh".
A mammary tumor is a neoplasm originating in the mammary gland. It is a common finding in older female dogs and cats that are not spayed, but they are found in other animals as well. The mammary glands in dogs and cats are associated with their nipples and extend from the underside of the chest to the groin on both sides of the midline. There are many differences between mammary tumors in animals and breast cancer in humans, including tumor type, malignancy, and treatment options. The prevalence in dogs is about three times that of women. In dogs, mammary tumors are the second most common tumor (after skin tumors) over all and the most common tumor in female dogs with a reported incidence of 3.4%. Multiple studies have documented that spaying female dogs when young greatly decreases their risk of developing mammary neoplasia when aged. Compared with female dogs left intact, those spayed before puberty have 0.5% of the risk, those spayed after one estrous cycle have 8.0% of the risk, and dogs spayed after two estrous cycles have 26.0% of the risk of developing mammary neoplasia later in life. Overall, unspayed female dogs have a seven times greater risk of developing mammary neoplasia than do those that are spayed. While the benefit of spaying decreases with each estrous cycle, some benefit has been demonstrated in female dogs even up to 9 years of age. There is a much lower risk (about 1 percent) in male dogs and a risk in cats about half that of dogs.
A vaccine-associated sarcoma (VAS) or feline injection-site sarcoma (FISS) is a type of malignant tumor found in cats (and rarely, dogs and ferrets) which has been linked to certain vaccines. VAS has become a concern for veterinarians and cat owners alike and has resulted in changes in recommended vaccine protocols. These sarcomas have been most commonly associated with rabies and feline leukemia virus vaccines, but other vaccines and injected medications have also been implicated.
Lewis lung carcinoma is a tumor discovered by Dr. Margaret R. Lewis of the Wistar Institute in 1951. This tumor originated spontaneously as a carcinoma of the lung of a C57BL mouse. The tumor does not appear to be grossly hemorrhagic and the majority of the tumor tissue is a semifirm homogeneous mass. It is also called 3LL and LLC and is used as a transplantable malignancy. It has been used in many studies.
In 1975, Munson discovered that cannabinoids suppress Lewis lung carcinoma cell growth. The mechanism of this action was shown to be inhibition of DNA synthesis Cannabinoids increase the life span of mice carrying Lewis lung tumors and decrease primary tumor size. There are multiple modes of action.