Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Among the signs/symptoms of arteriosclerosis are: sudden weakness, facial or lower limbs numbness, confusion, difficulty understanding speech and problems seeing.
Typically, Mönckeberg's arteriosclerosis is not associated with symptoms unless complicated by atherosclerosis, calciphylaxis, or accompanied by some other disease. However presence of Mönckeberg's arteriosclerosis is associated with poorer prognosis. This is probably due to vascular calcification causing increased arterial stiffness, increased pulse pressure and resulting in exaggerated damage to the heart and kidneys.
Mönckeberg's arteriosclerosis, or Mönckeberg's sclerosis, also called medial calcific sclerosis or Mönckeberg medial sclerosis, is a form of arteriosclerosis or vessel hardening, where calcium deposits are found in the muscular middle layer of the walls of arteries (the tunica media). It is an example of dystrophic calcification. This condition occurs as an age-related degenerative process. However, it can occur in pseudoxanthoma elasticum and idiopathic arterial calcification of infancy as a pathological condition, as well. Its clinical significance and cause are not well understood and its relationship to atherosclerosis and other forms of vascular calcification are the subject of disagreement.
Mönckeberg's arteriosclerosis is named after Johann Georg Mönckeberg, who first described it in 1903.
Arteriosclerosis is the thickening, hardening and loss of elasticity of the walls of arteries. This process gradually restricts the blood flow to one's organs and tissues and can lead to severe health risks brought on by atherosclerosis, which is a specific form of arteriosclerosis caused by the buildup of fatty plaques, cholesterol, and some other substances in and on the artery walls.
The following terms are similar, yet distinct, in both spelling and meaning, and can be easily confused: arteriosclerosis, arteriolosclerosis, and atherosclerosis. "Arteriosclerosis" is a general term describing any hardening (and loss of elasticity) of medium or large arteries (); "arteriolosclerosis" is any hardening (and loss of elasticity) of arterioles (small arteries); "atherosclerosis" is a hardening of an artery specifically due to an atheromatous plaque. The term "atherogenic" is used for substances or processes that cause atherosclerosis.
Atherosclerosis is asymptomatic for decades because the arteries enlarge at all plaque locations, thus there is no effect on blood flow. Even most plaque ruptures do not produce symptoms until enough narrowing or closure of an artery, due to clots, occurs. Signs and symptoms only occur after severe narrowing or closure impedes blood flow to different organs enough to induce symptoms. Most of the time, patients realize that they have the disease only when they experience other cardiovascular disorders such as stroke or heart attack. These symptoms, however, still vary depending on which artery or organ is affected.
Typically, atherosclerosis begins in childhood, as a thin layer of white-yellowish streaks with the inner layers of the artery walls (an accumulation of white blood cells, mostly monocytes/macrophages) and progresses from there.
Clinically, given enlargement of the arteries for decades, symptomatic atherosclerosis is typically associated with men in their 40s and women in their 50s to 60s. Sub-clinically, the disease begins to appear in childhood, and rarely is already present at birth. Noticeable signs can begin developing at puberty. Though symptoms are rarely exhibited in children, early screening of children for cardiovascular diseases could be beneficial to both the child and his/her relatives. While coronary artery disease is more prevalent in men than women, atherosclerosis of the cerebral arteries and strokes equally affect both sexes.
Marked narrowing in the coronary arteries, which are responsible for bringing oxygenated blood to the heart, can produce symptoms such as the chest pain of angina and shortness of breath, sweating, nausea, dizziness or light-headedness, breathlessness or palpitations. Abnormal heart rhythms called arrhythmias (the heart is either beating too slow or too fast) are another consequence of ischemia.
Carotid arteries supply blood to the brain and neck. Marked narrowing of the carotid arteries can present with symptoms such as a feeling of weakness, not being able to think straight, difficulty speaking, becoming dizzy and difficulty in walking or standing up straight, blurred vision, numbness of the face, arms, and legs, severe headache and losing consciousness. These symptoms are also related to stroke (death of brain cells). Stroke is caused by marked narrowing or closure of arteries going to the brain; lack of adequate blood supply leads to the death of the cells of the affected tissue.
Peripheral arteries, which supply blood to the legs, arms, and pelvis, also experience marked narrowing due to plaque rupture and clots. Symptoms for the marked narrowing are numbness within the arms or legs, as well as pain. Another significant location for the plaque formation is the renal arteries, which supply blood to the kidneys. Plaque occurrence and accumulation leads to decreased kidney blood flow and chronic kidney disease, which, like all other areas, are typically asymptomatic until late stages.
According to United States data for 2004, in about 66% of men and 47% of women, the first symptom of atherosclerotic cardiovascular disease is a heart attack or sudden cardiac death (death within one hour of onset of the symptom).
Cardiac stress testing, traditionally the most commonly performed non-invasive testing method for blood flow limitations, in general, detects only lumen narrowing of ≈75% or greater, although some physicians claim that nuclear stress methods can detect as little as 50%.
Case studies have included autopsies of U.S. soldiers killed in World War II and the Korean War. A much-cited report involved autopsies of 300 U.S. soldiers killed in Korea. Although the average age of the men was 22.1 years, 77.3 percent had "gross evidence of coronary arteriosclerosis". Other studies done of soldiers in the Vietnam War showed similar results, although often worse than the ones from the earlier wars. Theories include high rates of tobacco use and (in the case of the Vietnam soldiers) the advent of processed foods after World War II.
This is a type of arteriolosclerosis involving a narrowed lumen.
The term "onion-skin" is sometimes used to describe this form of blood vessel with thickened concentric smooth muscle cell layer and thickened, duplicated basement membrane. In malignant hypertension these hyperplastic changes are often accompanied by fibrinoid necrosis of the arterial intima and media. These changes are most prominent in the kidney and can lead to ischemia and acute kidney failure.
- Cause
It can be caused by malignant hypertension.
For most people, the first symptoms result from atheroma progression within the heart arteries, most commonly resulting in a heart attack and ensuing debility. However, the heart arteries, because (a) they are small (from about 5 mm down to microscopic), (b) they are hidden deep within the chest and (c) they never stop moving, have been a difficult target organ to track, especially clinically in individuals who are still asymptomatic. Additionally, all mass-applied clinical strategies focus on both (a) minimal cost and (b) the overall safety of the procedure. Therefore, existing diagnostic strategies for detecting atheroma and tracking response to treatment have been extremely limited. The methods most commonly relied upon, patient symptoms and cardiac stress testing, do not detect any symptoms of the problem until atheromatous disease is very advanced because arteries enlarge, not constrict in response to increasing atheroma. It is plaque ruptures, producing debris and clots which obstruct blood flow downstream, sometimes also locally (as seen on angiograms), which reduce/stop blood flow. Yet these events occur suddenly and are not revealed in advance by either stress testing, stress tests or angiograms.
An atheroma is a reversible accumulation of degenerative material in the inner layer of an artery wall. The material consists of mostly macrophage cells, or debris, containing lipids, calcium and a variable amount of fibrous connective tissue. The accumulated material forms a swelling in the artery wall, which may intrude into the channel of the artery, narrowing it and restricting blood flow. Atheroma occurs in atherosclerosis, which is one of the three subtypes of arteriosclerosis (which are atherosclerosis, Monckeberg's arteriosclerosis and arteriolosclerosis).
In the context of heart or artery matters, atheromata are commonly referred to as atheromatous plaques. It is an unhealthy condition found in most humans.
Veins do not develop atheromata, because they are not subjected to the same hemodynamic pressure that arteries are, unless surgically moved to function as an artery, as in bypass surgery. The accumulation (swelling) is always in the tunica intima, between the endothelium lining and the smooth muscle middle layer of the artery wall. While the early stages, based on gross appearance, have traditionally been termed fatty streaks by pathologists, they are not composed of fat cells but of accumulations of white blood cells, especially macrophages, that have taken up oxidized low-density lipoprotein (LDL). After they accumulate large amounts of cytoplasmic membranes (with associated high cholesterol content) they are called foam cells. When foam cells die, their contents are released, which attracts more macrophages and creates an extracellular lipid core near the center to inner surface of each atherosclerotic plaque. Conversely, the outer, older portions of the plaque become more calcified, less metabolically active and more physically stiff over time.
Arteriolosclerosis is a form of cardiovascular disease involving hardening and loss of elasticity of arterioles or small arteries and is most often associated with hypertension and diabetes mellitus.
Types include hyaline arteriolosclerosis and hyperplastic arteriolosclerosis, both involved with vessel wall thickening and luminal narrowing that may cause downstream ischemic injury.
The following two terms whilst similar, are distinct in both spelling and meaning and may easily be confused with arteriolosclerosis.
- Arteriosclerosis is a general term describing any hardening (and loss of elasticity) of medium or large arteries (from the Greek "arteria", meaning "artery", and "", meaning "hardening")
- Atherosclerosis is a hardening of an artery specifically due to an atheromatous plaque. The term "atherogenic" is used for substances or processes that cause atherosclerosis.
Chest pain that occurs regularly with activity, after eating, or at other predictable times is termed stable angina and is associated with narrowings of the arteries of the heart.
Angina that changes in intensity, character or frequency is termed unstable. Unstable angina may precede myocardial infarction. In adults who go to the emergency department with an unclear cause of pain, about 30% have pain due to coronary artery disease.
Coronary artery disease (CAD), also known as ischemic heart disease (IHD), refers to a group of diseases which includes stable angina, unstable angina, myocardial infarction, and sudden cardiac death. It is within the group of cardiovascular diseases of which it is the most common type. A common symptom is chest pain or discomfort which may travel into the shoulder, arm, back, neck, or jaw. Occasionally it may feel like heartburn. Usually symptoms occur with exercise or emotional stress, last less than a few minutes, and improve with rest. Shortness of breath may also occur and sometimes no symptoms are present. Occasionally, the first sign is a heart attack. Other complications include heart failure or an abnormal heartbeat.
Risk factors include high blood pressure, smoking, diabetes, lack of exercise, obesity, high blood cholesterol, poor diet, depression, and excessive alcohol. The underlying mechanism involves reduction of blood flow and oxygen to the heart muscle due to atherosclerosis of the arteries of the heart. A number of tests may help with diagnoses including: electrocardiogram, cardiac stress testing, coronary computed tomographic angiography, and coronary angiogram, among others.
Ways to reduce CAD risk include eating a healthy diet, regularly exercising, maintaining a healthy weight, and not smoking. Medications for diabetes, high cholesterol, or high blood pressure are sometimes used. There is limited evidence for screening people who are at low risk and do not have symptoms. Treatment involves the same measures as prevention. Additional medications such as antiplatelets (including aspirin), beta blockers, or nitroglycerin may be recommended. Procedures such as percutaneous coronary intervention (PCI) or coronary artery bypass surgery (CABG) may be used in severe disease. In those with stable CAD it is unclear if PCI or CABG in addition to the other treatments improves life expectancy or decreases heart attack risk.
In 2015 CAD affected 110 million people and resulted in 8.9 million deaths. It makes up 15.9% of all deaths making it the most common cause of death globally. The risk of death from CAD for a given age has decreased between 1980 and 2010, especially in developed countries. The number of cases of CAD for a given age has also decreased between 1990 and 2010. In the United States in 2010 about 20% of those over 65 had CAD, while it was present in 7% of those 45 to 64, and 1.3% of those 18 to 45. Rates are higher among men than women of a given age.
Macrovascular disease is a disease of any large ("macro") blood vessels in the body. It is a disease of the large blood vessels, including the coronary arteries, the aorta, and the sizable arteries in the brain and in the limbs.
This sometimes occurs when a person has had diabetes for an extended period of time. Fat and blood clots build up in the large blood vessels and stick to the vessel walls.
Three common macrovascular diseases are coronary disease (in the heart), cerebrovascular disease (in the brain), and peripheral vascular disease (in the limbs)
Macrovascular disease (macroangiopathy) refers to atherosclerosis. Atherosclerosis is a form of arteriosclerosis (thickening and hardening of arterial walls), characterized by plaque deposits of lipids, fibrous connective tissue, calcium, and other blood substances. Atherosclerosis, by definition, affects only medium and large arteries (excluding arterioles).
Macrovascular disease is associated with the development of coronary artery disease, peripheral vascular disease, brain attack (stroke), and increased risk of infection. Type 2 diabetes is more closely associated with macrovascular diseases than type 1 diabetes. Peripheral vascular disease and increased risk of infection have important implications in the care of the acutely ill patient.
Arterial stiffness occurs as a consequence of biological aging and arteriosclerosis. Inflammation plays a major role in arteriosclerosis development, and consequently it is a major contributor in large arteries stiffening. Increased arterial stiffness is associated with an increased risk of cardiovascular events such as myocardial infarction and stroke, the two leading causes of death in the developed world. The World Health Organisation predicts that in 2010, cardiovascular disease will also be the leading killer in the developing world and represents a major global health problem.
Several degenerative changes that occur with age in the walls of large elastic arteries are thought to contribute to increased stiffening over time, including the mechanical fraying of lamellar elastin structures within the wall due to repeated cycles of mechanical stress; changes in the kind and increases in content of arterial collagen proteins, partially as a compensatory mechanism against the loss of arterial elastin and partially due to fibrosis; and crosslinking of adjacent collagen fibers by advanced glycation endproducts (AGEs).
Arteriosclerosis obliterans is an occlusive arterial disease most prominently affecting the abdominal aorta and the small- and medium-sized arteries of the lower extremities, which may lead to absent dorsalis pedis, posterior tibial, and/or popliteal artery pulses.
It is characterized by fibrosis of the tunica intima and calcification of the tunica media.
Diabetic myonecrosis is a complication of diabetes. It is caused by infarcted muscle tissue, usually in the thigh.
Early symptoms of an arterial embolism in the arms or legs appear as soon as there is ischemia of the tissue, even before any frank infarction has begun. Such symptoms may include:
A major presentation of diabetic "skeletal muscle infarction" is painful thigh or leg swelling.
A limb infarction is an area of tissue death of an arm or leg. It may cause "skeletal muscle infarction", avascular necrosis of bones, or necrosis of a part of or an entire limb.
The mean age at presentation is thirty-seven years with a reported range of nineteen to sixty-four years. The mean age of onset since diagnosis of diabetes is fifteen years. The female:male ratio is 1.3:1. Other diabetic complications such as nephropathy, neuropathy, retinopathy and hypertension are usually present. Its major symptom is the acute onset muscle pain, usually in the thigh, in the absence of trauma. Signs include exquisite muscle tenderness and swelling.
When the heart contracts it generates a pulse or energy wave that travels through the circulatory system. The speed of travel of this pulse wave (pulse wave velocity (PWV)) is related to the stiffness of the arteries. Other terms that are used to describe the mechanical properties of arteries include elastance, or the reciprocal (inverse) of elastance, compliance. The relationship between arterial stiffness and pulse wave velocity was first predicted by Thomas Young in his Croonian Lecture of 1808 but is generally described by the Moens–Korteweg equation or the Bramwell–Hill equation. Typical values of PWV in the aorta range from approximately 5 m/s to >15 m/s.
Measurement of aortic PWV provides some of the strongest evidence concerning the prognostic significance of large artery stiffening. Increased aortic PWV has been shown to predict cardiovascular, and in some cases all cause, mortality in individuals with end stage renal failure, hypertension, diabetes mellitus and in the general population. However, at present, the role of measurement of PWV as a general clinical tool remains to be established. Devices are on the market that measure arterial stiffness parameters (augmentation index, pulse wave velocity). These include the Complior, CVProfilor, PeriScope, Hanbyul Meditech, Mobil-O-Graph NG, BP Plus (Pulsecor), PulsePen, BPLab Vasotens, Arteriograph, Vascular Explorer, and SphygmoCor.
Pseudohypertension, also known as pseudohypertension in the elderly, noncompressibility artery syndrome, and Osler's sign of pseudohypertension is a falsely elevated blood pressure reading obtained through sphygmomanometry due to calcification of blood vessels which cannot be compressed. There is normal blood pressure when it is measured from within the artery. This condition however is associated with significant cardiovascular disease risk.
Because the stiffened arterial walls of arteriosclerosis do not compress with pressure normally, the blood pressure reading is theoretically higher than the true intra-arterial measurement.
To perform the test, one first inflates the blood pressure cuff above systolic pressure to obliterate the radial pulse. One then attempts to palpate the radial artery, a positive test is if it remains palpable as a firm "tube".
It occurs frequently in the elderly irrespective of them being hypertensive, and has moderate to modest intraobserver and interobserver agreement. It is also known as "Osler's maneuver".
The sign is named for William Osler.
Several other diseases can result in retinopathy that can be confused with hypertensive retinopathy. These include diabetic retinopathy, retinopathy due to autoimmune disease, anemia, radiation retinopathy, and central retinal vein occlusion.
The changes in hypertensive retinopathy result from damage and adaptive changes in the arterial and arteriolar circulation in response to the high blood pressure.
Absorption of calcium salts normally occurs in bony tissues and is facilitated by parathyroid hormone and vitamin D. However, increased amounts of parathyroid hormone in the blood result in the deposit of calcium in soft tissues. This can be an indication of hyperparathyroidism, arteriosclerosis, or trauma to tissues.
Calcification of muscle can occur after traumatic injury and is known as myositis ossificans. It can be recognized by muscle tenderness and loss of stretch in the affected area. To reduce the risk of calcification after an injury, initiate what is commonly known as "RICE" (rest, ice, compression, and elevation).
Ectopic calcification is a pathologic deposition of calcium salts in tissues or bone growth in soft tissues. This can be a symptom of hyperphosphatemia. Formation of osseous tissue in soft tissues such as the lungs, eyes, arteries, or other organs is known as ectopic calcification, dystrophic calcification, or ectopic ossification.