Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most patients with ML IV show psychomotor retardation (i.e., delayed development of movement and coordination), corneal opacity, retinal degeneration and other ophthalmological abnormalities. Other symptoms include agenesis of the corpus callosum, iron deficiency resulting from an absence of acid secretion in the stomach, achlorhydria. Achlorhydria in these patients results in an increase in blood gastrin levels. These symptoms typically manifest early in life (within the first year). After disease onset there occurs a period of stability, typically lasting two to three decades during which very little disease progression occurs.
Mucolipidosis II (ML II) is a particularly severe form of ML that has a significant resemblance to another mucopolysaccharidoses called Hurler syndrome. Generally only laboratory testing can distinguish the two as the presentation is so similar. There are high plasma levels of lysosomal enzymes and are often fatal in childhood. Typically, by the age of 6 months, failure to thrive and developmental delays are obvious symptoms of this disorder. Some physical signs, such as abnormal skeletal development, coarse facial features, and restricted joint movement, may be present at birth. Children with ML II usually have enlargement of certain organs, such as the liver (hepatomegaly) or spleen (splenomegaly), and sometimes even the heart valves. Affected children often have stiff claw-shaped hands and fail to grow and develop in the first months of life. Delays in the development of their motor skills are usually more pronounced than delays in their cognitive (mental processing) skills. Children with ML II eventually develop a clouding on the cornea of their eyes and, because of their lack of growth, develop short-trunk dwarfism (underdeveloped trunk). These young patients are often plagued by recurrent respiratory tract infections, including pneumonia, otitis media (middle ear infections), bronchitis and carpal tunnel syndrome. Children with ML II generally die before their seventh year of life, often as a result of congestive heart failure or recurrent respiratory tract infections.
Symptoms of ML I are either present at birth or develop within the first year of life. In many infants with ML I, excessive swelling throughout the body is noted at birth. These infants are often born with coarse facial features, such as a flat nasal bridge, puffy eyelids, enlargement of the gums, and excessive tongue size (macroglossia). Many infants with ML I are also born with skeletal malformations such as hip dislocation. Infants often develop sudden involuntary muscle contractions (called myoclonus) and have red spots in their eyes (cherry red spots). They are often unable to coordinate voluntary movement (called ataxia). Tremors, impaired vision, and seizures also occur in children with ML I. Tests reveal abnormal enlargement of the liver (hepatomegaly) and spleen (splenomegaly) and extreme abdominal swelling. Infants with ML I generally lack muscle tone (hypotonia) and have mental retardation that is either initially or progressively severe. Many patients suffer from failure to thrive and from recurrent respiratory infections. Most infants with ML I die before the age of 1 year.
Symptoms of ML III are often not noticed until the child is 3–5 years of age. Patients with ML III are generally of normal intelligence (trait) or have only mild mental retardation. These patients usually have skeletal abnormalities, coarse facial features, short height, corneal clouding, carpal tunnel syndrome, aortic valve disease and mild enlargement of organs. Some children with severe forms of this disease do not live beyond childhood. However, there is a great variability among patients - there are diagnosed individuals with ML III living in their sixties.
Mucolipidosis type IV (ML IV or ML4) is an autosomal recessive lysosomal storage disorder. Individuals with the disorder have many symptoms including delayed psychomotor development and various ocular aberrations. The disorder is caused by mutations in the MCOLN1 gene, which encodes a non-selective cation channel, mucolipin1. These mutations disrupt cellular functions and lead to a neurodevelopmental disorder through an unknown mechanism. Researchers dispute the physiological role of the protein product and which ion it transports.
Mucolipidosis type I (ML I) or sialidosis is an inherited lysosomal storage disease that results from a deficiency of the enzyme alpha-N -acetyl neuraminidase (sialidase). The lack of this enzyme results in an abnormal accumulation of complex carbohydrates known as mucopolysaccharides, and of fatty substances known as mucolipids. Both of these substances accumulate in bodily tissues.
Inclusion-cell (I-cell) disease, also referred to as mucolipidosis II (ML II), is part of the lysosomal storage disease family and results from a defective phosphotransferase (an enzyme of the Golgi apparatus). This enzyme transfers phosphate to mannose residues on specific proteins. Mannose 6 phosphate serves as a marker for them to be targeted to lysosomes within the cell. Without this marker, the proteins are instead excreted outside the cell—the default pathway for proteins moving through the Golgi apparatus. Lysosomes cannot function without these proteins, which function as catabolic enzymes for the normal breakdown of substances (e.g. oligosaccharides, lipids, and glycosaminoglycans) in various tissues throughout the body (i.e. fibroblasts). As a result, a buildup of these substances occurs within lysosomes because they cannot be degraded, resulting in the characteristic I-cells, or "inclusion cells". These cells can be identified under the microscope. In addition, the defective lysosomal enzymes normally found only within lysosomes are instead found in high concentrations in the blood.
Pseudo-Hurler polydystrophy, also referred to as mucolipidosis III (ML III), is a lysosomal storage disease closely related to I-cell disease (ML II). This disorder is called Pseudo-Hurler because it resembles a mild form of Hurler syndrome, one of the mucopolysaccharide (MPS) diseases.
Mucolipidosis (ML) is a group of inherited metabolic disorders that affect the body's ability to carry out the normal turnover of various materials within cells.
When originally named, the mucolipidoses derived their name from the similarity in presentation to both mucopolysaccharidoses and sphingolipidoses. A biochemical understanding of these conditions has changed how they are classified. Although four conditions (I, II, III, and IV) have been labeled as mucolipidoses, type I (sialidosis) is now classified as a glycoproteinosis, and type IV (Mucolipidosis type IV) is now classified as a gangliosidosis.
The diagnosis of ML is based on clinical symptoms, a complete medical history, and certain laboratory tests.
Congenital dyserythropoietic anemia (CDA) is a rare blood disorder, similar to the thalassemias. CDA is one of many types of anemia, characterized by ineffective erythropoiesis, and resulting from a decrease in the number of red blood cells (RBCs) in the body and a less than normal quantity of hemoglobin in the blood.
Protein C deficiency is a rare genetic trait that predisposes to thrombotic disease. It was first described in 1981. The disease belongs to a group of genetic disorders known as thrombophilias. Protein C deficiency is associated with an increased incidence of venous thromboembolism (relative risk 8–10), whereas no association with arterial thrombotic disease has been found.
Hemophagocytic lymphohistiocytosis (HLH), also known as haemophagocytic lymphohistiocytosis (British spelling), and hemophagocytic or haemophagocytic syndrome, is an uncommon hematologic disorder seen more often in children than in adults. It is a life-threatening disease of severe hyperinflammation caused by uncontrolled proliferation of activated lymphocytes and macrophages, characterised by proliferation of morphologically benign lymphocytes and macrophages that secrete high amounts of inflammatory cytokines. It is classified as one of the cytokine storm syndromes.
All people with ALPS have signs of lymphoproliferation, which makes it the most common clinical manifestation of the disease. The increased proliferation of lymphoid cells can cause the size of lymphoid organs such as the lymph nodes and spleen to increase (lymphadenopathy and splenomegaly, present in respectively over 90% and over 80% of patients). The liver is enlarged (hepatomegaly in 30 - 40% of patients).
Autoimmune disease is the second most common clinical manifestation and one that most often requires treatment. Autoimmune cytopenias: Most common. Can be mild to very severe. Can be intermittent or chronic. These include: Autoimmune hemolytic anemia, Autoimmune neutropenia, Autoimmune thrombocytopenia.
Other signs can affect organ systems similar to systemic lupus erythematosus (least common, affecting <5% of patients) Symptoms of the nervous system include: Autoimmune cerebellar ataxia; Guillain–Barré syndrome; transverse myelitis. Gastrointestinal signs like Autoimmune esophagitis, gastritis, colitis, hepatitis, pancreatitis can be found or (Dermatologic) Urticaria, (Pulmonary) bronchiolitis obliterans, (Renal) Autoimmune glomerulonephritis, nephrotic syndrome.
Another sign are cancers such as Hodgkin and non-Hodgkin lymphomas which appear to be increased, possibly due to Epstein–Barr virus-encoded RNA-positivity. Some carcinomas may occur. Unaffected family members with genetic mutations are also at an increased risk of developing cancer.
LECT2 Amyloidosis is a form of amyloidosis caused by the LECT2 protein. It was found to be the third most common (~3% of total) cause of amyloidosis in a set of more than 4,000 individuals studied at the Mayo Clinic; the first and second most common forms the disorder were AL amyloidosis and AA amyloidosis, respectively. Amyloidosis is a disorder in which the abnormal deposition of a protein in organs and/or tissues gradually leads to organ failure and/or tissue injury.
Although more than 30 different proteins can cause amyloidosis, the disorder caused by LECT2 is distinctive in three ways. First, it has an unusually high incidence in certain ethnic populations. Second, it is a systemic form of amyloidosis (i.e. amyloid deposited in multiple organs), as opposed to a localized form (amyloid deposits limited to a single organ) but nonetheless injures the kidney without or rarely injuring the other organs in which it is deposited. Third, LECT2 amyloidosis is diagnosed almost exclusively in elderly individuals.
Given its relatively recent discovery, exceptionally strong ethnic bias, limitation to causing kidney disease, and restriction to elderly individuals, LECT2 amyloidosis appears at present to be an under-recognized cause of chronic kidney disease particularly in the ethnic groups that exhibit a high incidence of the disorer.
The onset of HLH occurs under the age of 1 year in ~70% of cases. Familial HLH should be suspected if siblings are diagnosed with HLH or if symptoms recur when therapy has been stopped. Each full sibling of a child with familial HLH has a 25% chance of developing the disease, a 50% chance of carrying the defective gene (which is very rarely associated with any risk of disease) and a 25% chance of not being affected and not carrying the gene defect.
Patients with HLH, especially when untreated, may need intensive therapy. Therefore, HLH should be included in the differential diagnosis of ICU (Intensive Care Unit) patients with cytopenia and hyperferritinemia.
HLH clinically manifests with fever, enlargement of the liver and spleen, enlarged lymph nodes, yellow discoloration of the skin and eyes, and a rash.
Most individuals diagnosed with LECT2 amyloidosis in the United States (88%) are of Mexican descent and reside in Southwest region of the United States (New Mexico, Arizona, far Western Texas). Other groups with higher incidence rates of the disorder include First Nation Peoples in Canada, Punjabis, South Asians, Sudanese, Native Americans, and Egyptians. In Egyptians, for example, LECT2 is second most common cause of renal amyloidosis, accounting for nearly 31% of all cases.
ALECT2 amyloidosis is generally diagnosed in individuals between the ages 40 and 90, with a mean age of 67 years old. The disorder commonly presents with renal disease that in general is advanced or at an end stage. Associated signs and symptoms of their renal disease may include fatigue, dehydration, blood in urine, and/or other evidence for the presence of the nephrotic syndrome or renal failure. Further studies may find that these individuals have histological or other evidence of LECT2 amyloid deposition in the liver, lung, spleen, kidney, and/or adrenal glands but nonetheless they rarely show any symptoms or signs attributable to dysfunction in these organs. Unlike many other forms of systemic amyloidosis, LECT2 deposition has not been reported to be deposited in the myocardium or brain of affected individuals. Thus, LECT2 amyloidosis, while classified as a form of systemic amyloidosis, almost exclusively manifests clinically as renal amyloidosis. No familial link has been found in the disorder although there have been several cases described among siblings.
The symptoms and signs of congenital dyserythropoietic anemia are consistent with:
- Tiredness (fatigue)
- Weakness
- Pale skin
A glucagonoma is a rare tumor of the alpha cells of the pancreas that results in the overproduction of the hormone glucagon. Alpha cell tumors are commonly associated with glucagonoma syndrome, though similar symptoms are present in cases of pseudoglucagonoma syndrome in the absence of a glucagon-secreting tumor.
Autoimmune lymphoproliferative syndrome (ALPS), also known as Canale-Smith syndrome, is a form of lymphoproliferative disorder (LPDs). It affects lymphocyte apoptosis. It is a RASopathy.
It is a rare genetic disorder of abnormal lymphocyte survival caused by defective Fas mediated apoptosis. Normally, after infectious insult, the immune system down-regulates by increasing Fas expression on activated B and T lymphocytes and Fas-ligand on activated T lymphocytes. Fas and Fas-ligand interact to trigger the caspase cascade, leading to cell apoptosis. Patients with ALPS have a defect in this apoptotic pathway, leading to chronic non-malignant lymphoproliferation, autoimmune disease, and secondary cancers.
The primary physiological effect of glucagonoma is an overproduction of the peptide hormone glucagon, which leads to an increase in blood glucose levels through the activation of anabolic and catabolic processes including gluconeogenesis and lipolysis respectively. Gluconeogenesis produces glucose from protein and amino acid materials. It also increases lipolysis, which is the breakdown of fat. The net result is hyperglucagonemia, decreased blood levels of amino acids (hypoaminoacidemia), anemia, diarrhea, and weight loss of 5 to15 kg.
Necrolytic migratory erythema (NME) is a classical symptom observed in patients with glucagonoma and is the presenting problem in 70% of cases. Associated NME is characterized by the spread of erythematous blisters and swelling across areas subject to greater friction and pressure, including the lower abdomen, buttocks, perineum, and groin.
Diabetes mellitus also frequently results from the insulin and glucagon imbalance that occurs in glucagonoma. Diabetes mellitus is present in 80% to 90% of cases of glucagonoma, and is exacerbated by preexisting insulin resistance.
Organs commonly affected by haemochromatosis are the liver, heart, and endocrine glands.
Haemochromatosis may present with the following clinical syndromes:
- Cirrhosis of the liver: Varies from zonal iron deposition to fibrosis (cirrhosis).
- Diabetes due to selective iron deposition in pancreatic islet beta cells leading to functional failure and cell death.
- Cardiomyopathy
- Arthritis, from calcium pyrophosphate deposition in joints. The most commonly affected joints are those of the hands, particularly the knuckles of the second and third fingers.
- Testicular failure
- Bronzing of the skin. This deep tan color, in concert with insulin insufficiency due to pancreatic damage, is the source of a nickname for this condition: "bronze diabetes".
- Joint pain and bone pain
Protein C is vitamin K-dependent. Patients with Protein C deficiency are at an increased risk of developing skin necrosis while on warfarin. Protein C has a short half life (8 hour) compared with other vitamin K-dependent factors and therefore is rapidly depleted with warfarin initiation, resulting in a transient hypercoagulable state.
In the initial phase of the disease, the mucosa feels leathery with palpable fibrotic bands. In the advanced stage the oral mucosa loses its resiliency and becomes blanched and stiff. The disease is believed to begin in the posterior part of the oral cavity and gradually spread outward.
Other features of the disease include:
- Xerostomia
- Recurrent ulceration
- Pain in the ear or deafness
- Nasal intonation of voice
- Restriction of the movement of the soft palate
- A budlike shrunken uvula
- Thinning and stiffening of the lips
- Pigmentation of the oral mucosa
- Dryness of the mouth and burning sensation
- Decreased mouth opening and tongue protrusion
Iron overload, also known as haemochromatosis, indicates accumulation of iron in the body from any cause. The most important causes are hereditary haemochromatosis (HHC), a genetic disorder, and transfusional iron overload, which can result from repeated blood transfusions.