Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most of the signs of MWS are present during the neonatal period. The most common signs at this state are multiple congenital joint contractures, dysmorphic features with mask-like face, blepharophimosis, ptosis, micrognathia, cleft or high arched palate, low-set ears, arachnodactyly, chest deformation as pectus, kyphoscoliosis and absent deep tendon reflexes are frequent minor malformations have also been described and consist of renal anomalies, cardiovascular abnormalities, hypospadias, omphalomesenteric duct, hypertriphic pyloric stenosis, duodenal bands, hyoplastic right lower lobe of the lung, displacement of the larynx to the right and vertebral abnormalities, cerebral malformations.
- 75% of children with MWS have blepharophimosis, small mouth, micrognathia, kyphosis/scoliosis, radio ulnar synostose and multiple contractures.
- They have severe developmental delay; congenital joint contractures and blepharophimosis should be present in every patient
- 2 out of 3 of the following signs should be manifested: post natal growth, mask-like faces, retardation, and decreased muscular mass.
- Some may require additional signs such as; micrognathia, high arched or cleft palate, low set ears, kyphoscoliosis.
- The symptoms of MWS are normally diagnosed during the newborn period
The natural history of MWS is not well known: many patients died in infancy and clinical follow-up has been reported in few surviving adults. However, diagnosis may be more difficult to establish in adults patients, such as: blepharophimosis, contractures, growth retardation, and developmental delay, whereas minor face anomalies are less noticeable as the patient grows older. Throughout the development of the patient from young child to older adult changes the behavior drastically, from kindness to restless and hyperactive to aggressive.
The most common facial features of SLOS include microcephaly, bitemporal narrowing (reduced distance between temples), ptosis, a short and upturned nose, micrognathia, epicanthal folds, and capillary hemangioma of the nose. Other physical characteristics include:
- low-set and posteriorly rotated ears
- high-arched, narrow, hard palate
- cleft lip/palate
- agenesis or hypoplasia of the corpus callosum
- cerebellar hypoplasia
- increased ventricular size
- decreased frontal lobe size
- polydactyly of hands or feet
- short, proximally placed thumb
- other finger malformations
- syndactyly of second and third toes
- ambiguous or female-like male genitalia
- congenital heart defects
- renal, pulmonary, liver and eye abnormalities
Two key features of AOS are aplasia cutis congenita with or without underlying bony defects and terminal transverse limb defects. Cutis aplasia congenita is defined as missing skin over any area of the body at birth; in AOS skin aplasia occurs at the vertex of the skull. The size of the lesion is variable and may range from solitary round hairless patches to complete exposure of the cranial contents. There are also varying degrees of terminal limb defects (for example, shortened digits) of the upper extremities, lower extremities, or both. Individuals with AOS may have mild growth deficiency, with height in the low-normal percentiles. The skin is frequently observed to have a mottled appearance (cutis marmorata telangiectatica congenita). Other congenital anomalies, including cardiovascular malformations, cleft lip and/or palate, abnormal renal system, and neurologic disorders manifesting as seizure disorders and developmental delay are sometimes observed. Variable defects in blood vessels have been described, including hypoplastic aortic arch, middle cerebral artery, pulmonary arteries. Other vascular abnormalities described in AOS include absent portal vein, portal sclerosis, arteriovenous malformations, abnormal umbilical veins, and dilated renal veins.
Learning disabilities and developmental delays are often seen in children with NARP, and older individuals with this condition may experience a loss of intellectual function (dementia). Other features of NARP include seizures, hearing loss, and abnormalities of the electrical signals that control the heartbeat (cardiac conduction defects). These signs and symptoms vary among affected individuals.
SLOS can present itself differently in different cases, depending on the severity of the mutation and other factors. Originally, SLOS patients were classified into two categories (classic and severe) based on external behaviours, physical characteristics, and other clinical features. Since the discovery of the specific biochemical defect responsible for SLOS, patients are given a severity score based on their levels of cerebral, ocular, oral, and genital defects. It is then used to classify patients as having mild, classical, or severe SLOS.
The syndrome consists of severe micrognathia, cleft lip and/or palate, hypoplasia or aplasia of the postaxial elements of the limbs, coloboma of the eyelids, and supernumerary nipples. Additional features of the syndrome include
downward-slanting palpebral fissures, malar hypoplasia, malformed ears, and a broad nasal ridge. Other features include supernumerary vertebrae and other vertebral segmentation and rib defects, heart defects (patent ductus arteriosus, ventricular septal defect and Ostium primum atrial septal defect), lung disease from chronic infection, single umbilical artery, absence of the hemidiaphragm, hypoplasia of the femora, ossification defects of the ischium and pubis, bilobed tongue, lung hypoplasia, and renal reflux.
As characterized in Kearns' original publication in 1965 and in later publications, inconsistent features of KSS that may occur are weakness of facial, pharyngeal, trunk, and extremity muscles, hearing loss, small stature, electroencephalographic changes, cerebellar ataxia and elevated levels of cerebrospinal fluid protein.
All forms of MDDS are very rare. MDDS causes a wide range of symptoms, which can appear in newborns, infants, children, or adults, depending on the class of MDDS; within each class symptoms are also diverse.
In MDDS associated with mutations in "TK2", infants generally develop normally, but by around two years of age, symptoms of general muscle weakness (called "hypotonia"), tiredness, lack of stamina, and difficulty feeding begin to appear. Some toddlers start to lose control of the muscles in their face, mouth, and throat, and may have difficulty swallowing. Motor skills that had been learned may be lost, but generally the functioning of the brain and ability to think are not affected.
In MDDS associated with mutations in "SUCLA2" or "SUCLG1" that primarily affect the brain and muscle, hypotonia generally arises in infants before they are 6 months old, their muscles begin wasting away, and there is delay in psychomotor learning (learning basic skills like walking, talking, and intentional, coordinated movement). The spine often begins to curve (scoliosis or kyphosis), and the child often has abnormal movements (dystonia, athetosis or chorea), difficulty feeding, acid reflux, hearing loss, stunted growth, and difficulty breathing that can lead to frequent lung infections. Sometime epilepsy develops.
In MDDS associated with mutations in "RRM2B" that primarily affect the brain and muscle, there is again hypotonia in the first months, symptoms of lactic acidosis like nausea, vomiting, and rapid deep breathing, failure to thrive including the head remaining small, delay or regression in moving, and hearing loss. Many body systems are affected.
In MDDS associated with mutations in "DGUOK" that primarily affect the brain and the liver, there are two forms. There is an early-onset form in which symptoms arise from problems in many organs in the first week of life, especially symptoms of lactic acidosis as well as low blood sugar. Within weeks of birth they can develop liver failure and the associated jaundice and abdominal swelling, and many neurological problems including developmental delays and regression, and uncontrolled eye movement. Rarely within class of already rare diseases, symptoms only relating to liver disease emerge later in infancy or in childhood.
In MDDS associated with mutations in "MPV17" that primarily affect the brain and the liver, the symptoms are similar to those caused by DGUOK and also emerge shortly after birth, generally with fewer and less severe neurological problems. There is a subset of people of Navajo descent who develop Navajo neurohepatopathy, who in addition to these symptoms also have easily broken bones that do not cause pain, deformed hands or feet, and problems with their corneas.
In MDDS associated with mutations in "POLG" that primarily affect the brain and the liver, the symptoms are very diverse and can emerge anytime from shortly after birth to old age. The first signs of the disease, which include intractable seizures and failure to meet meaningful developmental milestones, usually occur in infancy, after the first year of life, but sometimes as late as the fifth year. Primary symptoms of the disease are developmental delay, progressive intellectual disability, hypotonia (low muscle tone), spasticity (stiffness of the limbs) possibly leading to quadriplegia, and progressive dementia. Seizures may include epilepsia partialis continua, a type of seizure that consists of repeated myoclonic (muscle) jerks. Optic atrophy may also occur, often leading to blindness. Hearing loss may also occur. Additionally, although physical signs of chronic liver dysfunction may not be present, many people suffer liver impairment leading to liver failure.
In MDDS associated with mutations in "PEO1"/"C10orf2" that primarily affect the brain and the liver, symptoms emerge shortly after birth or in early infancy, with hypotonia, symptoms of lactic acidosis, enlarged liver, feeding problems, lack of growth, and delay of psychomotor skills. Neurologically, development is slowed or stopped, and epilepsy emerges, as do sensory problems like loss of eye control and deafness, and neuromuscular problems like a lack of reflexes, muscular atrophy, and twitching, and epilepsy.
In MDDS associated with mutations in the genes associated with mutations in "ECGF1"/"TYMP" that primarily affects the brain and the gastrointestinal tract, symptoms can emerge any time in the first fifty years of life; most often they emerge before the person turns 20. Weight loss is common as is a lack of the ability of the stomach and intestines to automatically expand and contract and thus move through it (called gastrointestinal motility) – this leads to feeling full after eating only small amounts of food, nausea, acid reflux, All affected individuals develop weight loss and progressive gastrointestinal dysmotility manifesting as early satiety, nausea, diarrhea, vomiting, and stomach pain and swelling. People also develop neuropathy, with weakness and tingling. There are often eye problems, and intellectual disability.
Cartilage–hair hypoplasia (CHH), also known as McKusick type metaphyseal chondrodysplasia, is a rare genetic disorder. It is a highly pleiotropic disorder that clinically manifests by form of short-limbed dwarfism due to skeletal dysplasia, variable level of immunodeficiency and predisposition to malignancies in some cases. It was first reported in 1965 by McKusick et al. Actor Verne Troyer is affected with this form of dwarfism, as was actor Billy Barty, who was renowned for saying "The name of my condition is Cartilage Hair Syndrome Hypoplasia, but you can just call me Billy."
A genetic disorder is a genetic problem caused by one or more abnormalities in the genome, especially a condition that is present from birth (congenital). Most genetic disorders are quite rare and affect one person in every several thousands or millions.
Genetic disorders may be hereditary, passed down from the parents' genes. In other genetic disorders, defects may be caused by new mutations or changes to the DNA. In such cases, the defect will only be passed down if it occurs in the germ line. The same disease, such as some forms of cancer, may be caused by an inherited genetic condition in some people, by new mutations in other people, and mainly by environmental causes in other people. Whether, when and to what extent a person with the genetic defect or abnormality will actually suffer from the disease is almost always affected by the environmental factors and events in the person's development.
Some types of recessive gene disorders confer an advantage in certain environments when only one copy of the gene is present.
These most often occur years after the development of ptosis and ophthalmoplegia. Atrioventricular(abbreviated "AV") block is the most common cardiac conduction deficit. This often progresses to a Third-degree atrioventricular block, which is a complete blockage of the electrical conduction from the atrium to the ventricle. Symptoms of heart block include syncope, exercise intolerance, and bradycardia
Neuropathy, ataxia, and retinitis pigmentosa, also known as NARP syndrome, is a rare disease with mitochondrial inheritance that causes a variety of signs and symptoms chiefly affecting the nervous system Beginning in childhood or early adulthood, most people with NARP experience numbness, tingling, or pain in the arms and legs (sensory neuropathy); muscle weakness; and problems with balance and coordination (ataxia). Many affected individuals also have vision loss caused by changes in the light-sensitive tissue that lines the back of the eye (the retina). In some cases, the vision loss results from a condition called retinitis pigmentosa. This eye disease causes the light-sensing cells of the retina gradually to deteriorate.
Adams–Oliver syndrome (AOS) is a rare congenital disorder characterized by defects of the scalp and cranium (cutis aplasia congenita), transverse defects of the limbs, and mottling of the skin.
Complete trisomy 8 causes severe effects on the developing fetus and can be a cause of miscarriage.
Complete trisomy 8 is usually an early lethal condition, whereas trisomy 8 mosaicism is less severe and individuals with a low proportion of affected cells may exhibit a comparatively mild range of physical abnormalities and developmental delay. Individuals with trisomy 8 mosaicism are more likely to survive into childhood and adulthood, and exhibit a characteristic and recognizable pattern of developmental abnormalities. Common findings include retarded psychomotor development, moderate to severe mental retardation, variable growth patterns which can result in either abnormally short or tall stature, an expressionless face, and many musculoskeletal, visceral, and eye abnormalities, as well as other anomalies. A deep plantar furrow is considered to be pathognomonic of this condition, especially when seen in combination with other associated features. The type and severity of symptoms are dependent upon the location and proportion of trisomy 8 cells compared to normal cells.
MDDS are a group of genetic disorders that share a common pathology — a lack of functioning DNA in mitochondria. There are generally four classes of MDDS:
- a form that primarily affects muscle associated with mutations in the "TK2" gene;
- a form that primarily affects the brain and muscle associated with mutations in the genes "SUCLA2", "SUCLG1", or "RRM2B";
- a form that primarily affects the brain and the liver associated with mutations in "DGUOK", "MPV17", "POLG", or "PEO1" (also called "C10orf2"); and
- a form that primarily affects the brain and the gastrointestinal tract associated with mutations in "ECGF1" (also called "TYMP").
Patients with CHH usually suffer from cellular immunodeficiency. In the study of 108 Finnish patients with CHH there was detected mild to moderate form of lymphopenia, decreased delayed type of hypersensitivity and impaired responses to phytohaemagglutinin. This leads to susceptibility to and, in some more severe cases, mortality from infections early in childhood. There has also been detected combined immunodeficiency in some patients
Patients with CHH often have increased predispositions to malignancies.
Miller syndrome is a genetic condition also known as the Genee–Wiedemann syndrome, Wildervanck–Smith syndrome, or postaxial acrofacial dystosis. The incidence of this condition is not known, but it is considered extremely rare. It is due to a mutation in the DHODH gene. Nothing is known of its pathogenesis.
Due to the wide range of genetic disorders that are presently known, diagnosis of a genetic disorder is widely varied and dependent of the disorder. Most genetic disorders are diagnosed at birth or during early childhood, however some, such as Huntington's disease, can escape detection until the patient is well into adulthood.
The basic aspects of a genetic disorder rests on the inheritance of genetic material. With an in depth family history, it is possible to anticipate possible disorders in children which direct medical professionals to specific tests depending on the disorder and allow parents the chance to prepare for potential lifestyle changes, anticipate the possibility of stillbirth, or contemplate termination. Prenatal diagnosis can detect the presence of characteristic abnormalities in fetal development through ultrasound, or detect the presence of characteristic substances via invasive procedures which involve inserting probes or needles into the uterus such as in amniocentesis.
The skin lesions evolve through characteristic stages:
1. blistering (from birth to about four months of age),
2. a wart-like rash (for several months),
3. swirling macular hyperpigmentation (from about six months of age into adulthood), followed by
4. linear hypopigmentation.
Alopecia, hypodontia, abnormal tooth shape, and dystrophic nails are observed. Some patients have retinal vascular abnormalities predisposing to retinal detachment in early childhood. Cognitive delays/mental retardation are occasionally seen.
Discolored skin is caused by excessive deposits of melanin (normal skin pigment).
Most newborns with IP will develop discolored skin within the first two weeks.
The pigmentation involves the trunk and extremities, is slate-grey, blue or brown, and is distributed in irregular marbled or wavy lines.
The discoloration sometimes fades with age.
Neurological problems can include: cerebral atrophy, the formation of small cavities in the central white matter of the brain, and the loss of neurons in the cerebellar cortex.
About 20% of children with IP will have slow motor development, muscle weakness in one or both sides of the body, mental retardation, and seizures.
They are also likely to have visual problems, which can include: crossed eyes, cataracts, and severe visual loss.
Dental problems are common, and include missing or peg-shaped teeth - patients with IP often keep milk teeth into adult life.
Breast anomalies can occur in 1% of patients; anomalies can include hypoplasia and supernumerary nipples.
Skeletal and structural anomalies can occur in approximately 14% of patients, including:
- Somatic asymmetry,
- Hemivertebrae,
- Scoliosis,
- Spina bifida,
- Syndactyly,
- Acheiria (congenital absence of the hands - note: other limbs may be affected),
- Ear anomalies,
- Extra ribs,
- Skull deformities,
- Primary pulmonary hypertension,
- Cardiopulmonary failure
Trisomy 8, also known as Warkany syndrome 2, is a human chromosomal disorder caused by having three copies (trisomy) of chromosome 8. It can appear with or without mosaicism.
Like other mitochrondrial diseases, "MNGIE is a multisystem disorder". MNGIE primarily affects the gastrointestinal and neurological systems. Gastrointestinal symptoms may include gastrointestinal dysmotility, due to inefficient peristalsis, which may result in pseudo-obstruction and cause malabsorption of nutrients. Additionally, gastrointestinal symptoms such as borborygmi, early satiety, diarrhea, constipation, gastroparesis, nausea, vomiting, weight loss, and diverticulitis may be present in MNGIE patients. Neurological symptoms may include diffuse leukoencephalopathy, peripheral neuropathy, and myopathy. Ocular symptoms may include retinal degeneration, ophthalmoplegia, and ptosis. Those with MNGIE are often thin and experience continuous weight loss. The characteristic thinness of MNGIE patients is caused by multiple factors including inadequate caloric intake due to gastrointestinal symptoms and discomfort, malabsorption of food from bacterial overgrowth due to decreased motility, as well as an increased metabolic demand due to inefficient production of ATP by the mitochondria.
Malpuech syndrome is congenital, being apparent at birth. It is characterized by a feature known as facial clefting. Observed and noted in the initial description of the syndrome as a cleft lip and palate, facial clefting is identified by clefts in the bones, muscles and tissues of the face, including the lips and palate. The forms of cleft lip and palate typically seen with Malpuech syndrome are midline (down the middle of the lip and palate) or bilateral (affecting both sides of the mouth and palate). Facial clefting generally encompasses a wide range of severity, ranging from minor anomalies such as a (split) uvula, to a cleft lip and palate, to major developmental and structural defects of the facial bones and soft tissues. Clefting of the lip and palate occurs during embryogenesis. Additional facial and ortho-dental anomalies that have been described with the syndrome include: hypertelorism (unusually wide-set eyes, sometimes reported as telecanthus), narrow palpebral fissures (the separation between the upper and lower eyelids) and ptosis (drooping) of the eyelids, frontal bossing (prominent eyebrow ridge) with synophris, highly arched eyebrows, wide nasal root and a flattened nasal tip, malar hypoplasia (underdeveloped upper cheek bone), micrognathia (an undersized lower jaw), and prominent incisors. Auditory anomalies include an enlarged ear ridge, and hearing impairment associated with congenital otitis media (or "glue ear", inflammation of the middle ear) and sensorineural hearing loss.
Another feature identified with Malpuech syndrome is a caudal appendage. A caudal appendage is a congenital outgrowth stemming from the coccyx (tailbone). Present in many non-human animal species as a typical tail, this feature when seen in an infant has been described as a "human tail". This was observed by Guion-Almeida (1995) in three individuals from Brazil. The appendage on X-rays variously appeared as a prominent protrusion of the coccyx. On a physical examination, the appendage resembles a nodule-like stub of an animal tail.
Deficiencies such as mental retardation, learning disability, growth retardation and developmental delay are common. Psychiatric manifestations that have been reported with the syndrome include psychotic behavior, obsessive–compulsive disorder, loss of inhibition, hyperactivity, aggression, fear of physical contact, and compulsive actions like echolalia (repeating the words spoken by another person). Neuromuscular tics have also been noted.
Urogenital abnormalities, or those affecting the urinary and reproductive systems, are common with the syndrome. Malpuech et al. (1983) and Kerstjens-Frederikse et al. (2005) reported variously in affected males a micropenis, hypospadias (a congenital mislocation of the urinary meatus), cryptorchidism ( or undescended testes), bifid (split) and underdeveloped scrotum, and an obstructive urethral valve. An affected boy was also reported by Reardon et al. (2001) with left renal agenesis, an enlarged and downwardly displaced right kidney, cryptorchidism and a shawl scrotum. Other malformations that have been noted with the syndrome are omphalocele and an umbilical hernia.
Congenital abnormalities of the heart have also been observed with Malpuech syndrome. From a healthy Japanese couple, Chinen and Naritomi (1995) described the sixth child who had features consistent with the disorder. This two-month-old male infant was also affected by cardiac anomalies including patent ductus arteriosus (PDA) and ventricular septal defect. The opening in the ductus arteriosus associated with PDA had been surgically repaired in the infant at 38 days of age. A number of minor skeletal aberrations were also reported in the infant, including wormian bones at the lambdoid sutures.
This exclusively myopathic form is the most prevalent and least severe phenotypic presentation of this disorder. Characteristic signs and symptoms include rhabdomyolysis (breakdown of muscle fibers and subsequent release of myoglobin), myoglobinuria, recurrent muscle pain, and weakness. It is important to note that muscle weakness and pain typically resolves within hours to days, and patients appear clinically normal in the intervening periods between attacks. Symptoms are most often exercise-induced, but fasting, a high-fat diet, exposure to cold temperature, or infection (especially febrile illness) can also provoke this metabolic myopathy. In a minority of cases, disease severity can be exacerbated by three life-threatening complications resulting from persistent rhabdomyolysis: acute kidney failure, respiratory insufficiency, and episodic abnormal heart rhythms. Severe forms may have continual pain from general life activity. The adult form has a variable age of onset. The first appearance of symptoms usually occurs between 6 and 20 years of age but has been documented in patients as young as 8 months as well as in adults over the age of 50. Roughly 80% cases reported to date have been male.
Symptomatic presentation usually occurs between 6 and 24 months of age, but the majority of cases have been documented in children less than 1 year of age. The infantile form involves multiple organ systems and is primarily characterized by hypoketotic hypoglycemia (recurring attacks of abnormally low levels of fat breakdown products and blood sugar) that often results in loss of consciousness and seizure activity. Acute liver failure, liver enlargement, and cardiomyopathy are also associated with the infantile presentation of this disorder. Episodes are triggered by febrile illness, infection, or fasting. Some cases of sudden infant death syndrome are attributed to infantile CPT II deficiency at autopsy.