Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are three main types of carnitine palmitoyltransferase II deficiency classified on the basis of tissue-specific symptomotology and age of onset:
- Mild to severe adult myopathic form
- Severe infantile multisystemic form
- Lethal neonatal form
It should be noted that among the few people diagnosed with CPT2, some have unknown and/or novel mutations that place them outside these three categories while remaining positive for CPT2.
This exclusively myopathic form is the most prevalent and least severe phenotypic presentation of this disorder. Characteristic signs and symptoms include rhabdomyolysis (breakdown of muscle fibers and subsequent release of myoglobin), myoglobinuria, recurrent muscle pain, and weakness. It is important to note that muscle weakness and pain typically resolves within hours to days, and patients appear clinically normal in the intervening periods between attacks. Symptoms are most often exercise-induced, but fasting, a high-fat diet, exposure to cold temperature, or infection (especially febrile illness) can also provoke this metabolic myopathy. In a minority of cases, disease severity can be exacerbated by three life-threatening complications resulting from persistent rhabdomyolysis: acute kidney failure, respiratory insufficiency, and episodic abnormal heart rhythms. Severe forms may have continual pain from general life activity. The adult form has a variable age of onset. The first appearance of symptoms usually occurs between 6 and 20 years of age but has been documented in patients as young as 8 months as well as in adults over the age of 50. Roughly 80% cases reported to date have been male.
The signs and symptoms of this disorder typically appear in early childhood. Almost all affected children have delayed development. Additional signs and symptoms can include weak muscle tone (hypotonia), seizures, diarrhea, vomiting, and low blood sugar (hypoglycemia). A heart condition called cardiomyopathy, which weakens and enlarges the heart muscle, is another common feature of malonyl-CoA decarboxylase deficiency.
Some common symptoms in Malonyl-CoA decarboxylase deficiency, such as cardiomyopathy and metabolic acidosis, are triggered by the high concentrations of Malonyl-CoA in the cytoplasm. High level of Malonyl-CoA will inhibits β-oxidation of fatty acids through deactivating the carrier of fatty acyl group, CPT1, and thus, blocking fatty acids from going into the mitochondrial matrix for oxidation.
A research conducted in Netherlands has suggested that carnitine supplements and a low fat diet may help to reduce the level of malonic acid in our body.
Signs and symptoms of CTLN1 in infants are caused by increasing levels of ammonia in the blood and cerebrospinal fluid and include excessive vomiting, anorexia, refusal to eat, irritability, increased intracranial pressure, and worsening lethargy, seizures, hypotonia, respiratory distress, hepatomegaly, and cerebral edema. These symptoms appear within days of birth in the more severe forms of the disease with complete deficiency of the enzyme. As ammonia accumulates further, the affected infant may enter a hyperammonemic coma, which indicates neurological damage and can cause developmental delays, cognitive disabilities, cerebral palsy, hypertonia, spasticity, ankle clonus, seizures, and liver failure.
Milder forms of the disease are caused by partial arginosuccinate synthetase deficiency and may manifest in childhood or in adulthood. Symptoms of mild CTLN1 include failure to thrive, avoidance of high-protein foods, ataxia, worsening lethargy, and vomiting. Hyperammonemic coma can still develop in these people. CTLN1 can also develop in the perinatal period.
Malonyl-CoA decarboxylase deficiency (MCD), or Malonic aciduria is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-Coa decarboxylase. This enzyme breaks down Malonyl-CoA (a fatty acid precursor and a fatty acid oxidation blocker) into Acetyl-CoA and carbon dioxide.
People with methylmalonyl CoA mutase deficiency exhibit many symptoms similar to other diseases involving inborn errors of metabolism. Sometimes the symptoms appear shortly after birth, but other times the onset of symptoms is later.
Newborn babies experience with vomiting, acidosis, hyperammonemia, hepatomegaly (enlarged livers), hyperglycinemia (high glycine levels), and hypoglycemia (low blood sugar). Later, cases of thrombocytopenia and neutropenia can occur.
In some cases intellectual and developmental disabilities, such as autism, were noted with increased frequency in populations with methylmalonyl-CoA mutase deficiency.
This defect leads to a multi-systemic disorder of the connective tissue, muscles, central nervous system (CNS), and cardiovascular system. Homocystinuria represents a group of hereditary metabolic disorders characterized by an accumulation of the amino acid homocysteine in the serum and an increased excretion of homocysteine in the urine. Infants appear to be normal and early symptoms, if any are present, are vague.
Signs and symptoms of homocystinuria that may be seen include the following:
PDCD is generally presented in one of two forms. The metabolic form appears as lactic acidosis. The neurological form of PDCD contributes to hypotonia, poor feeding, lethargy and structural abnormalities in the brain. Patients may develop seizures and/or neuropathological spasms. These presentations of the disease usually progress to mental retardation, microcephaly, blindness and spasticity.
Females with residual pyruvate dehydrogenase activity will have no uncontrollable systemic lactic acidosis and few, if any, neurological symptoms. Conversely, females with little to no enzyme activity will have major structural brain abnormalities and atrophy. Males with mutations that abolish, or almost abolish, enzyme activity presumably die in utero because brain cells are not able to generate enough ATP to be functionally viable. It is expected that most cases will be of mild severity and have a clinical presentation involving lactic acidosis.
Prenatal onset may present with non-specific signs such as low Apgar scores and small for gestational age. Metabolic disturbances may also be considered with poor feeding and lethargy out of proportion to a mild viral illness, and especially after bacterial infection has been ruled out. PDH activity may be enhanced by exercise, phenylbutyrate and dichloroacetate.
The clinical presentation of congenital PDH deficiency is typically characterized by heterogenous neurological features that usually appear within the first year of life. In addition, patients usually show severe hyperventillation due to profound metabolic acidosis mostly related to lactic acidosis. Metabolic acidosis in these patients is usually refractory to correction with bicarbonate.
Citrullinemia type I (CTLN1), also known as arginosuccinate synthetase deficiency, is a rare disease caused by a deficiency in argininosuccinate synthetase, an enzyme involved in excreting excess nitrogen from the body. There are mild and severe forms of the disease, which is one of the urea cycle disorders.
The low incidence of this syndrome is often related to aldolase A's essential glycolytic role along with its exclusive expression in blood and skeletal muscle. Early developmental reliance and constitutive function prevents severe mutation in successful embryos. Infrequent documentation thus prevents clear generalisation of symptoms and causes. However five cases have been well described. ALDOA deficiency is diagnosed through reduced aldoA enzymatic activity, however, both physiological response and fundamental causes vary.
The symptoms are visible within the first week of life and if not detected and diagnosed correctly immediately consequences are fatal.
Ornithine translocase deficiency, also called hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, is a rare autosomal recessive urea cycle disorder affecting the enzyme ornithine translocase, which causes ammonia to accumulate in the blood, a condition called hyperammonemia.
Ammonia, which is formed when proteins are broken down in the body, is toxic if the levels become too high. The nervous system is especially sensitive to the effects of excess ammonia.
The presentation of mitochondrial trifunctional protein deficiency may begin during infancy, features that occur are: low blood sugar, weak muscle tone, and liver problems. Infants with this disorder are at risk for heart problems, breathing difficulties, and pigmentary retinopathy. Signs and symptoms of mitochondrial trifunctional protein deficiency that may begin "after" infancy include hypotonia, muscle pain, a breakdown of muscle tissue, and a loss of sensation in the extremities called peripheral neuropathy. Some who have MTP deficiency show a progressive course associated with myopathy, and recurrent rhabdomyolysis.
Glycerol Kinase Deficiency causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. This excess of glycerol in bodily fluids can lead to many more potentially dangerous symptoms. Common symptoms include vomiting and lethargy. These tend to be the only symptoms, if any, present in adult GKD which has been found to present with fewer symptoms than infant or juvenile GKD. When GKD is accompanied by Duchenne Muscular Dystrophy and Adrenal Hypoplasia Congenita, also caused by mutations on the Xp21 chromosome, the symptoms can become much more severe. Symptoms visible at or shortly after birth include:
- cryptorchidism
- strabismus
- seizures
Some other symptoms that become more noticeable with time would be:
- metabolic acidosis
- hypoglycemia
- adrenal cortex insufficiency
- learning disabilities
- osteoporosis
- myopathy
Many of the physically visible symptoms, such as cryptorchidism, strabismus, learning disabilities, and myopathy, tend to have an added psychological effect on the subject due to the fact that they can set him or her apart from those without GKD. Cryptorchidism, the failure of one or both of the testes to descend to the scrotum, has been known to lead to sexual identity confusion amongst young boys because it is such a major physiological anomaly. Strabismus is the misalignment of one’s eyes. Typically, one is focused but the other is “lazy” and is directed inward or out ward (up and down is less common but does occur).
Glycerol Kinase Deficiency (GKD) is an X-linked recessive enzyme defect that is heterozygous in nature. Three clinically distinct forms of this deficiency have been proposed, namely infantile, juvenile, and adult. National Institutes of Health and its Office of Rare Diseases Research (ORDR) branch classifies GKD as a rare disease, known to affect fewer than 200,000 individuals in the United States. The responsible gene lies in a region containing genes in which deletions can cause Duchenne muscular dystrophy and adrenal hypoplasia congenita. Combinations of these three genetic defects including GKD are addressed medically as Complex GKD.
This disorder causes neurological problems, including mental retardation, brain atrophy and ventricular dilation, myoclonus, hypotonia, and epilepsy.
It is also associated with growth retardation, megaloblastic anemia, pectus excavatum, scoliosis, vomiting, diarrhea, and hepatosplenomegaly.
Transaldolase deficiency is a disease characterised by abnormally low levels of the Transaldolase enzyme. It is a metabolic enzyme involved in the pentose phosphate pathway. It is caused by mutation in the transaldolase gene (TALDO1). It was first described by Verhoeven et al. in 2001.
2,4 Dienoyl-CoA reductase deficiency is an inborn error of metabolism resulting in defective fatty acid oxidation caused by a deficiency of the enzyme 2,4 Dienoyl-CoA reductase. Lysine degradation is also affected in this disorder leading to hyperlysinemia. The disorder is inherited in an autosomal recessive manner, meaning an individual must inherit mutations in "NADK2," located at 5p13.2 from both of their parents. NADK2 encodes the mitochondrial NAD kinase. A defect in this enzyme leads to deficient mitochondrial nicotinamide adenine dinucleotide phosphate levels. 2,4 Dienoyl-CoA reductase, but also lysine degradation are performed by NADP-dependent oxidoreductases explaining how NADK2 deficiency can lead to multiple enzyme defects.
2,4-Dienoyl-CoA reductase deficiency was initially described in 1990 based on a single case of a black female who presented with persistent hypotonia. Laboratory investigations revealed elevated lysine, low levels of carnitine and an abnormal acylcarnitine profile in urine and blood. The abnormal acylcarnitine species was eventually identified as 2-trans,4-cis-decadienoylcarnitine, an intermediate of linoleic acid metabolism. The index case died of respiratory failure at four months of age. Postmortem enzyme analysis on liver and muscle samples revealed decreased 2,4-dienoyl-CoA reductase activity when compared to normal controls. A second case with failure to thrive, developmental delay, lactic acidosis and severe encephalopathy was reported in 2014.
2,4-Dienoyl-CoA reductase deficiency was included as a secondary condition in the American College of Medical Genetics Recommended Uniform Panel for newborn screening. Its status as a secondary condition means there was not enough evidence of benefit to include it as a primary target, but it may be detected during the screening process or as part of a differential diagnosis when detecting conditions included as primary target. Despite its inclusion in newborn screening programs in several states for a number of years, no cases have been identified via neonatal screening.
Symptoms include poor growth, loss of muscle coordination, muscle weakness, visual problems, hearing problems, learning disabilities, heart disease, liver disease, kidney disease, gastrointestinal disorders, respiratory disorders, neurological problems, autonomic dysfunction and dementia. Acquired conditions in which mitochondrial dysfunction has been involved are: diabetes, Huntington's disease, cancer, Alzheimer's disease, Parkinson's disease, bipolar disorder, schizophrenia, aging and senescence, anxiety disorders, cardiovascular disease, sarcopenia, chronic fatigue syndrome.
The body, and each mutation, is modulated by other genome variants; the mutation that in one individual may cause liver disease might in another person cause a brain disorder. The severity of the specific defect may also be great or small. Some minor defects cause only "exercise intolerance", with no serious illness or disability. Defects often affect the operation of the mitochondria and multiple tissues more severely, leading to multi-system diseases.
As a rule, mitochondrial diseases are worse when the defective mitochondria are present in the muscles, cerebrum, or nerves, because these cells use more energy than most other cells in the body.
Although mitochondrial diseases vary greatly in presentation from person to person, several major clinical categories of these conditions have been defined, based on the most common phenotypic features, symptoms, and signs associated with the particular mutations that tend to cause them.
An outstanding question and area of research is whether ATP depletion or reactive oxygen species are in fact responsible for the observed phenotypic consequences.
Cerebellar atrophy or hypoplasia has sometimes been reported to be associated.
Aldolase A deficiency, also called ALDOA deficiency, red cell aldolase deficiency or glycogen storage disease type 12 (GSD XII) is an autosomal recessive metabolic disorder resulting in a deficiency of the enzyme aldolase A; the enzyme is found predominantly in red blood cells and muscle tissue. The deficiency may lead to hemolytic anaemia as well as myopathy associated with exercise intolerance and rhabdomyolysis in some cases.
Pyruvate dehydrogenase deficiency (also known as pyruvate dehydrogenase complex deficiency or PDCD) is one of the most common neurodegenerative disorders associated with abnormal mitochondrial metabolism. PDCD is an X-linked disease that shows heterogeneous characteristics in both clinical presentation and biochemical abnormality. The pyruvate dehydrogenase complex (PDC) is a multi-enzyme complex that plays a vital role as a key regulatory step in the central pathways of energy metabolism in the mitochondria.
It is caused by the deficiency of the enzyme cystathionine beta synthase, and the deficiency of folic acid, vitamin B12 and pyridoxine (vitamin B6), or mutations of related enzymes.
Fumarase deficiency causes encephalopathy, severe mental retardation, unusual facial features, brain malformation, and epileptic seizures due to an abnormally low amount of fumarase in cells. It can initially present with polyhydramnios on prenatal ultrasound. Affected neonates may demonstrate nonspecific signs of poor feeding and hypotonia. Laboratory findings in neonates may indicate polycythemia, leukopenia, or neutropenia. As they age, neurological deficits begin to manifest with seizures, dystonias, and severe developmental delay.
A Glycogen storage disease (GSD, also glycogenosis and dextrinosis) is a metabolic disorder caused by enzyme deficiencies affecting either glycogen synthesis, glycogen breakdown or glycolysis (glucose breakdown), typically within muscles and/or liver cells.
GSD has two classes of cause: genetic and acquired. Genetic GSD is caused by any inborn error of metabolism (genetically defective enzymes) involved in these processes. In livestock, acquired GSD is caused by intoxication with the alkaloid castanospermine.
Remarks:
- Some GSDs have different forms, e.g. infantile, juvenile, adult (late-onset).
- Some GSDs have different subtypes, e.g. GSD1a / GSD1b, GSD9A1 / GSD9A2 / GSD9B / GSD9C / GSD9D.
- GSD type 0: Although glycogen synthase deficiency does not result in storage of extra glycogen in the liver, it is often classified with the GSDs as type 0 because it is another defect of glycogen storage and can cause similar problems.
- GSD type VIII (GSD 8): In the past it was considered a distinct condition, however it is now classified with GSD type VI or GSD IXa1; it has been described as X-linked recessive inherited.
- GSD type XI (GSD 11): Fanconi-Bickel syndrome, hepatorenal glycogenosis with renal Fanconi syndrome, no longer considered a glycogen storage disease.
- GSD type XIV (GSD 14): Now classed as Congenital disorder of glycosylation type 1 (CDG1T), affects the phosphoglucomutase enzyme (gene PGM1).
- Lafora disease is considered a complex neurodegenerative disease and also a glycogen metabolism disorder.