Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Bloom syndrome is characterized by genome instability. The most prominent features include short stature and a rash on the face that develops early in life when exposed to the sun. The skin rash is erythematous, telangiectatic, infiltrated, and scaly, it can appear across the nose, on the cheeks and around the lips. As well as these areas the rash will develop on any other sun-exposed areas including, the backs of the hands and neck. Other clinical features include a high-pitched voice; distinct facial features, including a long, narrow face, micrognathism, and prominent nose and ears; pigmentation changes of the skin including hypo-pigmented and hyper-pigmented areas, cafe-au-lait spots, and telangiectasias (dilated blood vessels), which can appear on the skin and eyes. Moderate immune deficiency, characterized by deficiency in certain immunoglobulin classes has also been related to BS, leading to recurrent pneumonia and ear infections. Most individuals with Bloom syndrome are born with a low birth weight. Hypogonadism is characterized by a failure to produce sperm, hence infertility in males, and premature cessation of menses (premature menopause), hence sub-fertility in females. However, several women with Bloom syndrome have had children. The most serious and common complication of Bloom syndrome is cancer. Other complications of the disorder include chronic obstructive lung disease, diabetes, and learning disabilities. There is no evidence that mental retardation is more common in Bloom syndrome than in other people. People with Bloom Syndrome have a shortened life expectancy; the average life span is approximately 27 years. Bloom syndrome shares some features with Fanconi anemia possibly because there is overlap in the function of the proteins mutated in this related disorder.
Bloom syndrome (often abbreviated as BS in literature), also known as Bloom-Torre-Machacek syndrome, is a rare autosomal recessive disorder characterized by short stature, predisposition to the development of cancer and genomic instability. BS is caused by mutations in the BLM gene leading to mutated DNA helicase protein formation. Cells from a person with Bloom syndrome exhibit a striking genomic instability that includes excessive crossovers between homologous chromosomes and sister chromatid exchanges (SCEs). The condition was discovered and first described by New York dermatologist Dr. David Bloom in 1954.
Cockayne syndrome (CS), also called Neill-Dingwall syndrome, is a rare and fatal autosomal recessive neurodegenerative disorder characterized by growth failure, impaired development of the nervous system, abnormal sensitivity to sunlight (photosensitivity), eye disorders and premature aging. Failure to thrive and neurological disorders are criteria for diagnosis, while photosensitivity, hearing loss, eye abnormalities, and cavities are other very common features. Problems with any or all of the internal organs are possible. It is associated with a group of disorders called leukodystrophies, which are conditions characterized by degradation of neurological white matter. The underlying disorder is a defect in a DNA repair mechanism. Unlike other defects of DNA repair, patients with CS are not predisposed to cancer or infection. Cockayne syndrome is a rare but destructive disease usually resulting in death within the first or second decade of life. The mutation of specific genes in Cockayne syndrome is known, but the widespread effects and its relationship with DNA repair is yet to be well understood.
It is named after English physician Edward Alfred Cockayne (1880–1956) who first described it in 1936 and re-described in 1946. Neill-Dingwall syndrome was named after Mary M. Dingwall and Catherine A. Neill. These women described the case of two brothers with Cockayne syndrome and asserted it was the same disease described by Cockayne. In their article the women contributed to the symptoms of the disease through their discovery of calcifications in the brain. They also compared Cockayne syndrome to what is now known as Hutchinson–Gilford progeria syndrome (HGPS), then called progeria, due to the advanced aging that characterizes both disorders.
All forms of MDDS are very rare. MDDS causes a wide range of symptoms, which can appear in newborns, infants, children, or adults, depending on the class of MDDS; within each class symptoms are also diverse.
In MDDS associated with mutations in "TK2", infants generally develop normally, but by around two years of age, symptoms of general muscle weakness (called "hypotonia"), tiredness, lack of stamina, and difficulty feeding begin to appear. Some toddlers start to lose control of the muscles in their face, mouth, and throat, and may have difficulty swallowing. Motor skills that had been learned may be lost, but generally the functioning of the brain and ability to think are not affected.
In MDDS associated with mutations in "SUCLA2" or "SUCLG1" that primarily affect the brain and muscle, hypotonia generally arises in infants before they are 6 months old, their muscles begin wasting away, and there is delay in psychomotor learning (learning basic skills like walking, talking, and intentional, coordinated movement). The spine often begins to curve (scoliosis or kyphosis), and the child often has abnormal movements (dystonia, athetosis or chorea), difficulty feeding, acid reflux, hearing loss, stunted growth, and difficulty breathing that can lead to frequent lung infections. Sometime epilepsy develops.
In MDDS associated with mutations in "RRM2B" that primarily affect the brain and muscle, there is again hypotonia in the first months, symptoms of lactic acidosis like nausea, vomiting, and rapid deep breathing, failure to thrive including the head remaining small, delay or regression in moving, and hearing loss. Many body systems are affected.
In MDDS associated with mutations in "DGUOK" that primarily affect the brain and the liver, there are two forms. There is an early-onset form in which symptoms arise from problems in many organs in the first week of life, especially symptoms of lactic acidosis as well as low blood sugar. Within weeks of birth they can develop liver failure and the associated jaundice and abdominal swelling, and many neurological problems including developmental delays and regression, and uncontrolled eye movement. Rarely within class of already rare diseases, symptoms only relating to liver disease emerge later in infancy or in childhood.
In MDDS associated with mutations in "MPV17" that primarily affect the brain and the liver, the symptoms are similar to those caused by DGUOK and also emerge shortly after birth, generally with fewer and less severe neurological problems. There is a subset of people of Navajo descent who develop Navajo neurohepatopathy, who in addition to these symptoms also have easily broken bones that do not cause pain, deformed hands or feet, and problems with their corneas.
In MDDS associated with mutations in "POLG" that primarily affect the brain and the liver, the symptoms are very diverse and can emerge anytime from shortly after birth to old age. The first signs of the disease, which include intractable seizures and failure to meet meaningful developmental milestones, usually occur in infancy, after the first year of life, but sometimes as late as the fifth year. Primary symptoms of the disease are developmental delay, progressive intellectual disability, hypotonia (low muscle tone), spasticity (stiffness of the limbs) possibly leading to quadriplegia, and progressive dementia. Seizures may include epilepsia partialis continua, a type of seizure that consists of repeated myoclonic (muscle) jerks. Optic atrophy may also occur, often leading to blindness. Hearing loss may also occur. Additionally, although physical signs of chronic liver dysfunction may not be present, many people suffer liver impairment leading to liver failure.
In MDDS associated with mutations in "PEO1"/"C10orf2" that primarily affect the brain and the liver, symptoms emerge shortly after birth or in early infancy, with hypotonia, symptoms of lactic acidosis, enlarged liver, feeding problems, lack of growth, and delay of psychomotor skills. Neurologically, development is slowed or stopped, and epilepsy emerges, as do sensory problems like loss of eye control and deafness, and neuromuscular problems like a lack of reflexes, muscular atrophy, and twitching, and epilepsy.
In MDDS associated with mutations in the genes associated with mutations in "ECGF1"/"TYMP" that primarily affects the brain and the gastrointestinal tract, symptoms can emerge any time in the first fifty years of life; most often they emerge before the person turns 20. Weight loss is common as is a lack of the ability of the stomach and intestines to automatically expand and contract and thus move through it (called gastrointestinal motility) – this leads to feeling full after eating only small amounts of food, nausea, acid reflux, All affected individuals develop weight loss and progressive gastrointestinal dysmotility manifesting as early satiety, nausea, diarrhea, vomiting, and stomach pain and swelling. People also develop neuropathy, with weakness and tingling. There are often eye problems, and intellectual disability.
Werner syndrome patients exhibit growth retardation, short stature, premature graying of hair, alopecia (hair loss), wrinkling, prematurely aged faces with beaked noses, skin atrophy (wasting away) with scleroderma-like lesions, lipodystrophy (loss of fat tissues), abnormal fat deposition leading to thin legs and arms, and severe ulcerations around the Achilles tendon and malleoli (around ankles). Other symptoms include change in voice (weak, hoarse, high-pitched), atrophy of gonads leading to reduced fertility, bilateral cataracts (clouding of lens), premature arteriosclerosis (thickening and loss of elasticity of arteries), calcinosis (calcium deposits in blood vessels), atherosclerosis (blockage of blood vessels), type 2 diabetes, osteoporosis (loss of bone mass), telangiectasia, and malignancies. The prevalence of rare cancers, such as meningiomas, are increased in individuals with Werner syndrome.
Learning disabilities and developmental delays are often seen in children with NARP, and older individuals with this condition may experience a loss of intellectual function (dementia). Other features of NARP include seizures, hearing loss, and abnormalities of the electrical signals that control the heartbeat (cardiac conduction defects). These signs and symptoms vary among affected individuals.
The mutation in the WRN gene that causes Werner syndrome is autosomal and recessive, meaning that sufferers must inherit a copy of the gene from each parent. Patients display rapid premature aging beginning in young adulthood, usually in their early twenties. Diagnosis is based on six cardinal symptoms: premature graying of the hair or hair loss, presence of bilateral cataracts, atrophied or tight skin, soft tissue calcification, sharp facial features, and an abnormal, high-pitched voice. Patients are also generally short-statured due to absence of the adolescent growth spurt. Patients also display decreased fertility. The most common symptom of the six is premature graying and loss of hair. This is also generally the earliest observed symptom, with hair loss occurring first on the scalp and the eyebrows.
Werner syndrome patients often have skin that appears shiny and tight, and may also be thin or hardened. This is due to atrophy of the subcutaneous tissue and dermal fibrosis. Over time, facial features may be more apparent due to these skin conditions. Other associated skin conditions include ulcers, which are very difficult to treat in Werner syndrome patients, and are caused in part by decreased potential of skin cells for replication.
WS cataracts are distinctly different from those of normal aging. They are associated with problems in the lens posterior cortex and subcapsular regions. These cataracts are generally treatable with cataract surgery, which should restore normal vision.
Symptoms become apparent in the late teens and early twenties and continue to progress. Most patients live to about fifty years of age. The most common causes of death for people are associated diseases and complications, especially atherosclerosis and cancer.
Persons with this syndrome have smaller than normal head sizes (microcephaly), are of short stature (dwarfism), their eyes appear sunken, and they have an "aged" look. They often have long limbs with joint contractures (inability to relax muscle at a joint), a hunched back (kyphosis), and they may be very thin (cachetic), due to a loss of subcutaneous fat. Their small chin, large ears, and pointy, thin nose often give an aged appearance.
The skin of those with Cockayne syndrome is also frequently affected. Hyperpigmentation, varicose or spider veins (telangiectasia), and serious sensitivity to sunlight are common, even in individuals without XP-CS. Often patients with Cockayne Syndrome will severely burn or blister with very little exposure.
The eyes of patients can be affected in various ways and eye abnormalities are common in CS. Cataracts and cloudiness of the cornea (corneal opacity) are common. The loss of and damage to nerves of the optic nerve, causing optic atrophy can occur. Nystagmus, or involuntary eye movement, and pupils that fail to dilate demonstrate a loss of control of voluntary and involuntary muscle movement. A salt and pepper retinal pigmentation is also a visible symptom.
Diagnosis is determined by a specific test for DNA repair, which measures the recovery of RNA after exposure to UV radiation. Despite being associated with genes involved in nucleotide excision repair (NER), unlike xeroderma pigmentosum, CS is not associated with an increased risk of cancer.
The symptoms of Leigh syndrome are classically described as beginning in infancy and leading to death within a span of several years; however, as more cases are recognized, it is apparent that symptoms can emerge at any age—including adolescence or adulthood—and patients can survive for many years following diagnosis. Symptoms are often first seen after a triggering event that taxes the body's energy production, such as an infection or surgery. The general course of Leigh syndrome is one of episodic developmental regression during times of metabolic stress. Some patients have long periods without disease progression while others develop progressive decline.
Infants with the syndrome have symptoms that include diarrhea, vomiting, and dysphagia (trouble swallowing or sucking), leading to a failure to thrive. Children with early Leigh disease also may appear irritable and cry much more than usual. Seizures are often seen. Excess lactate may be seen in the urine, cerebrospinal fluid, and blood of a person with Leigh syndrome.
As the disease progresses, the muscular system is debilitated throughout the body, as the brain cannot control the contraction of muscles. Hypotonia (low muscle tone and strength), dystonia (involuntary, sustained muscle contraction), and ataxia (lack of control over movement) are often seen in people with Leigh disease. The eyes are particularly affected; the muscles that control the eyes become weak, paralyzed, or uncontrollable in conditions called ophthalmoparesis (weakness or paralysis) and nystagmus (involuntary eye movements). Slow saccades are also sometimes seen. The heart and lungs can also fail as a result of Leigh disease. Hypertrophic cardiomyopathy (thickening of part of the heart muscle) is also sometimes found and can cause death; asymmetric septal hypertrophy has also been associated with Leigh syndrome. In children with Leigh-syndrome associated ventricular septal defects, caused by pyruvate dehydrogenase deficiency, high forehead and large ears are seen; facial abnormalities are not typical of Leigh syndrome.
However, respiratory failure is the most common cause of death in people with Leigh syndrome. Other neurological symptoms include peripheral neuropathy, loss of sensation in extremities caused by damage to the peripheral nervous system.
Hypertrichosis is seen in Leigh syndrome caused by mutations in the nuclear gene SURF1.
As characterized in Kearns' original publication in 1965 and in later publications, inconsistent features of KSS that may occur are weakness of facial, pharyngeal, trunk, and extremity muscles, hearing loss, small stature, electroencephalographic changes, cerebellar ataxia and elevated levels of cerebrospinal fluid protein.
MDDS are a group of genetic disorders that share a common pathology — a lack of functioning DNA in mitochondria. There are generally four classes of MDDS:
- a form that primarily affects muscle associated with mutations in the "TK2" gene;
- a form that primarily affects the brain and muscle associated with mutations in the genes "SUCLA2", "SUCLG1", or "RRM2B";
- a form that primarily affects the brain and the liver associated with mutations in "DGUOK", "MPV17", "POLG", or "PEO1" (also called "C10orf2"); and
- a form that primarily affects the brain and the gastrointestinal tract associated with mutations in "ECGF1" (also called "TYMP").
Neuropathy, ataxia, and retinitis pigmentosa, also known as NARP syndrome, is a rare disease with mitochondrial inheritance that causes a variety of signs and symptoms chiefly affecting the nervous system Beginning in childhood or early adulthood, most people with NARP experience numbness, tingling, or pain in the arms and legs (sensory neuropathy); muscle weakness; and problems with balance and coordination (ataxia). Many affected individuals also have vision loss caused by changes in the light-sensitive tissue that lines the back of the eye (the retina). In some cases, the vision loss results from a condition called retinitis pigmentosa. This eye disease causes the light-sensing cells of the retina gradually to deteriorate.
These most often occur years after the development of ptosis and ophthalmoplegia. Atrioventricular(abbreviated "AV") block is the most common cardiac conduction deficit. This often progresses to a Third-degree atrioventricular block, which is a complete blockage of the electrical conduction from the atrium to the ventricle. Symptoms of heart block include syncope, exercise intolerance, and bradycardia
Progeroid syndromes (PS) are a group of rare genetic disorders which mimic physiological aging, making affected individuals appear to be older than they are. The term "progeroid syndrome" does not necessarily imply progeria (Hutchinson–Gilford progeria syndrome), which is a specific type of progeroid syndrome.
"Progeroid" means "resembling premature aging", a definition that can apply to a broad range of diseases. Familial Alzheimer's disease and familial Parkinson's disease are two well-known accelerated-aging diseases that are more frequent in older individuals. They affect only one tissue and can be classified as unimodal progeroid syndromes. Segmental progeria, which is more frequently associated with the term "progeroid syndrome", tends to affect multiple or all tissues while causing affected individuals to exhibit only some of the features associated with aging.
All disorders within this group are thought to be monogenic, meaning they arise from mutations of a single gene. Most known PS are due to genetic mutations that lead to either defects in the DNA repair mechanism or defects in lamin A/C.
Examples of PS include Werner syndrome (WS), Bloom syndrome (BS), Rothmund–Thomson syndrome (RTS), Cockayne syndrome (CS), xeroderma pigmentosum (XP), trichothiodystrophy (TTD), combined xeroderma pigmentosum-Cockayne syndrome (XP-CS), restrictive dermopathy (RD), and Hutchinson–Gilford progeria syndrome (HGPS). Individuals with these disorders tend to have a reduced lifespan. Progeroid syndromes have been widely studied in the fields of aging, regeneration, stem cells, and cancer. The most widely studied of the progeroid syndromes are Werner syndrome and Hutchinson–Gilford progeria, as they are seen to most resemble natural aging.
The syndrome causes cerebellar ataxia (balance and coordination problems), mental retardation, congenital cataracts in early childhood, muscle weakness, inability to chew food, thin brittle fingernails, and sparse hair.
Small stature, mild to severe mental retardation and dysarthria (slow, imprecise speech) are usually present.
Various skeletal abnormalities (e.g., curvature of the spine) and hypergonadotropic hypogonadism often occur.
Muscle weakness is progressive, but life expectancy is near normal.
Like other mitochrondrial diseases, "MNGIE is a multisystem disorder". MNGIE primarily affects the gastrointestinal and neurological systems. Gastrointestinal symptoms may include gastrointestinal dysmotility, due to inefficient peristalsis, which may result in pseudo-obstruction and cause malabsorption of nutrients. Additionally, gastrointestinal symptoms such as borborygmi, early satiety, diarrhea, constipation, gastroparesis, nausea, vomiting, weight loss, and diverticulitis may be present in MNGIE patients. Neurological symptoms may include diffuse leukoencephalopathy, peripheral neuropathy, and myopathy. Ocular symptoms may include retinal degeneration, ophthalmoplegia, and ptosis. Those with MNGIE are often thin and experience continuous weight loss. The characteristic thinness of MNGIE patients is caused by multiple factors including inadequate caloric intake due to gastrointestinal symptoms and discomfort, malabsorption of food from bacterial overgrowth due to decreased motility, as well as an increased metabolic demand due to inefficient production of ATP by the mitochondria.
Leigh syndrome (also called Leigh disease and subacute necrotizing encephalomyelopathy) is an under-recognized inherited neurometabolic disorder that affects the central nervous system. It is named after Archibald Denis Leigh, a British neuropsychiatrist who first described the condition in 1951.
Diagnosis of MSS is based on clinical symptoms, magnetic resonance imaging (MRI) of the brain (cerebellar atrophy particularly involving the cerebellar vermis), and muscle biopsy.
It can be associated with mutations of the SIL1 gene, and a mutation can be found in about 50% of cases.
Differential diagnosis includes Congenital Cataracts Facial Dysmorphism Neuropathy (CCFDN), Marinesco–Sjögren like syndrome with chylomicronemia, carbohydrate deficient glycoprotein syndromes, Lowe syndrome, and mitochondrial disease.
De Barsy syndrome is a rare autosomal recessive genetic disorder. Symptoms include cutis laxa (loose hanging skin) as well as other eye, musculoskeletal, and neurological abnormalities. It is usually progressive, manifesting side effects that can include clouded corneas, cataracts, short stature, dystonia, or progeria (premature aging).
It was first described in 1967 by De Barsy et al. and, as of 2011, there have been 27 cases reported worldwide. The genes that cause De Barsy syndrome have not been identified yet, although several studies have narrowed down the symptoms' cause. A study by Reversade et al. has shown that a mutation in PYCR1, the genetic sequence that codes for mitochondrial enzymes that break down proline, are prevalent in cases of autosomal recessive cutis laxa (ARCL), a condition very similar to De Barsy syndrome. A study by Leao-Teles et al. has shown that De Barsy syndrome may be related to mutations in ATP6V0A2 gene, known as ATP6V0A2-CDG by the new naming system.
Alternative names for De Barsy syndrome include corneal clouding-cutis laxa-mental retardation, cutis laxa-growth deficiency syndrome, De Barsy–Moens–Diercks syndrome, and progeroid syndrome of De Barsy.
Those affected were born prematurely, and suffered from feeding difficulties and developmental delays. They presented with progressive kidney disease and primary pulmonary hypertension, and ultimately died.
MELAS is a condition that affects many of the body's systems, particularly the brain and nervous system (encephalo-) and muscles (myopathy). In most cases, the signs and symptoms of this disorder appear in childhood following a period of normal development. Early symptoms may include muscle weakness and pain, recurrent headaches, loss of appetite, vomiting, and seizures. Most affected individuals experience stroke-like episodes beginning before age 40. These episodes often involve temporary muscle weakness on one side of the body (hemiparesis), altered consciousness, vision abnormalities, seizures, and severe headaches resembling migraines. Repeated stroke-like episodes can progressively damage the brain, leading to vision loss, problems with movement, and a loss of intellectual function (dementia). The stroke-like episodes can be mis-diagnosed as epilepsy by a doctor not aware of the MELAS condition.
Most people with MELAS have a buildup of lactic acid in their bodies, a condition called lactic acidosis. Increased acidity in the blood can lead to vomiting, abdominal pain, extreme tiredness (fatigue), muscle weakness, loss of bowel control, and difficulty breathing. Less commonly, people with MELAS may experience involuntary muscle spasms (myoclonus), impaired muscle coordination (ataxia), hearing loss, heart and kidney problems, diabetes, epilepsy, and hormonal imbalances.
The presentation of some cases is similar to that of Kearns-Sayre syndrome.
Mitochondrial neurogastrointestinal encephalopathy syndrome (MNGIE) is a rare autosomal recessive mitochondrial disease. It has been previously referred to as polyneuropathy, ophthalmoplegia, leukoencephalopathy, and POLIP syndrome. The disease presents in childhood, but often goes unnoticed for decades. Unlike typical mitochondrial diseases caused by mitochondrial DNA (mtDNA) mutations, MNGIE is caused by mutations in the TYMP gene, which encodes the enzyme thymidine phosphorylase. Mutations in this gene result in impaired mitochondrial function, leading to intestinal symptoms as well as neuro-ophthalmologic abnormalities. "A secondary form of MNGIE, called MNGIE without leukoencephalopathy, can be caused by mutations in the POLG gene".
HUPRA syndrome is a rare syndrome that was first described in 2010 in two infants of Palestinian origin from the same village in the Jerusalem area. One of the two infants' parents were related. It was later described in a third infant from the same village, whose parents were not related.
The acronym stands for Hyperuricemia, Pulmonary hypertension, Renal failure in infancy and Alkalosis. And it's due to mutations in the mitochondrial SARS enzyme. It's an autosomal recessive disease, that has a prevalence of less than one in a million. One in fifteen of the village's inhabitants were found to carry the genetic mutation.
Severe cases of CLA manifest in the neonatal period; milder cases caused by mtDNA mutations may not manifest until as late as early adulthood. Symptoms may be constant or brought on by an event causing stress, such as an asthma attack, seizure, or infection. Symptoms in the neonatal period include hypotonia, lethargy, vomiting, and tachypnea. As the disease progresses, it causes developmental delay, cognitive disabilities, abnormal development of the face and head, and organ failure.
Pearson syndrome is a mitochondrial disease characterized by sideroblastic anemia and exocrine pancreas dysfunction. Other clinical features are failure to thrive, pancreatic fibrosis with insulin-dependent diabetes and exocrine pancreatic deficiency, muscle and neurologic impairment, and, frequently, early death. It is usually fatal in infancy. The few patients who survive into adulthood often develop symptoms of Kearns-Sayre syndrome.
It is caused by a deletion in mitochondrial DNA. Pearson syndrome is very rare, less than hundred cases have been reported in medical literature worldwide.
The syndrome was first described by pediatric hematologist and oncologist Howard Pearson in 1979; the deletions causing it were discovered a decade later.