Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Anemia goes undetected in many people and symptoms can be minor. The symptoms can be related to an underlying cause or the anemia itself.
Most commonly, people with anemia report feelings of weakness or tired, and sometimes poor concentration. They may also report shortness of breath on exertion. In very severe anemia, the body may compensate for the lack of oxygen-carrying capability of the blood by increasing cardiac output. The patient may have symptoms related to this, such as palpitations, angina (if pre-existing heart disease is present), intermittent claudication of the legs, and symptoms of heart failure.
On examination, the signs exhibited may include pallor (pale skin, lining mucosa, conjunctiva and nail beds), but this is not a reliable sign. There may be signs of specific causes of anemia, e.g., koilonychia (in iron deficiency), jaundice (when anemia results from abnormal break down of red blood cells — in hemolytic anemia), bone deformities (found in thalassemia major) or leg ulcers (seen in sickle-cell disease).
In severe anemia, there may be signs of a hyperdynamic circulation: tachycardia (a fast heart rate), bounding pulse, flow murmurs, and cardiac ventricular hypertrophy (enlargement). There may be signs of heart failure.
Pica, the consumption of non-food items such as ice, but also paper, wax, or grass, and even hair or dirt, may be a symptom of iron deficiency, although it occurs often in those who have normal levels of hemoglobin.
Chronic anemia may result in behavioral disturbances in children as a direct result of impaired neurological development in infants, and reduced academic performance in children of school age. Restless legs syndrome is more common in those with iron-deficiency anemia.
Microcytosis is a condition in which red blood cells are unusually small as measured by their mean corpuscular volume.
It is also known as "microcythemia". When associated with anemia, it is known as microcytic anemia.
Anisocytosis is a medical term meaning that a patient's red blood cells are of unequal size. This is commonly found in anemia and other blood conditions. False diagnostic flagging may be triggered by an elevated WBC count, agglutinated RBCs, RBC fragments, giant platelets or platelet clumps. In addition, it is a characteristic feature of bovine blood.
The red cell distribution width (RDW) is a measurement of anisocytosis and is calculated as a coefficient of variation of the distribution of RBC volumes divided by the mean corpuscular volume (MCV)
Microcytic anemia is not caused by reduced DNA synthesis.
Thalassemia can cause microcytosis. Depending upon how the terms are being defined, thalassemia can be considered a cause of microcytic anemia, or it can be considered a cause of microcytosis but not a cause of microcytic anemia.
There are many causes of microcytosis, which is essentially only a descriptor. Cells can be small because of mutations in the formation of blood cells (hereditary microcytosis) or because they are not filled with enough hemoglobin, as in iron-deficiency-associated microcytosis.
Red blood cells can be characterised by their haemoglobin content as well as by their size. The haemoglobin content is referred to as the cell's colour. Therefore, there are both "normochromic microcytotic red cells" and "hypochromic, microcytotic red cells". The normochromic cells have a normal concentration of haemoglobin, and are therefore 'red enough' while the hypochromic cells do not; thus the value of the mean corpuscular hemoglobin concentration.
Hyperanemia is a severe form of anemia, in which the hematocrit is below 10%.
Anisocytosis is identified by RDW and is classified according to the size of RBC measured by MCV. According to this, it can be divided into
- Anisocytosis with microcytosis – Iron deficiency, sickle cell anemia
- Anisocytosis with macrocytosis – Folate or vitamin B deficiency, autoimmune hemolytic anemia, cytotoxic chemotherapy, chronic liver disease, myelodysplastic syndrome
Increased RDW is seen in iron deficiency anemia and decreased or normal in thalassemia major (Cooley's anemia), thalassemia intermedia
- Anisocytosis with normal RBC size – Early iron, vit B12 or folate deficiency, dimorphic anemia, Sickle cell disease, chronic liver disease, Myelodysplastic syndrome
An individual with delta-beta thalassemia is usually asymptomatic, however microcytosis can occur where the red blood cells are abnormally small.
Delta-beta thalassemia is a form of thalassemia, and is autosomal recessive in terms of heredity. It is associated with "hemoglobin subunit delta"
Thalassemias are inherited blood disorders characterized by abnormal hemoglobin production. Symptoms depend on the type and can vary from none to severe. Often there is mild to severe anemia (low red blood cells). Anemia can result in feeling tired and pale skin. There may also be bone problems, an enlarged spleen, yellowish skin, dark urine, and among children slow growth.
Thalassemias are genetic disorders inherited from a person's parents. There are two main types, alpha thalassemia and beta thalassemia. The severity of alpha and beta thalassemia depends on how many of the four genes for alpha globin or two genes for beta globin are missing. Diagnosis is typically by blood tests including a complete blood count, special hemoglobin tests, and genetic tests. Diagnosis may occur before birth through prenatal testing.
Treatment depends on the type and severity. Treatment for those with more severe disease often includes regular blood transfusions, iron chelation, and folic acid. Iron chelation may be done with deferoxamine or deferasirox. Occasionally, a bone marrow transplant may be an option. Complications may include iron overload from the transfusions with resulting heart or liver disease, infections, and osteoporosis. If the spleen becomes overly enlarged, surgical removal may be required.
As of 2013, thalassemia occurs in about 280 million people, with about 439,000 having severe disease. It is most common among people of Italian, Greek, Middle Eastern, South Asian, and African descent. Males and females have similar rates of disease. It resulted in 16,800 deaths in 2015, down from 36,000 deaths in 1990. Those who have minor degrees of thalassemia, similar to those with sickle-cell trait, have some protection against malaria, explaining why they are more common in regions of the world where malaria exists.
Both α- and β-thalassemias are often inherited in an autosomal recessive manner. Cases of dominantly inherited α- and β-thalassemias have been reported, the first of which was in an Irish family with two deletions of 4 and 11 bp in exon 3 interrupted by an insertion of 5 bp in the β-globin gene. For the autosomal recessive forms of the disease, both parents must be carriers for a child to be affected. If both parents carry a hemoglobinopathy trait, the risk is 25% for each pregnancy for an affected child.
Estimates suggest that approximately 1.5% of the global population (80 - 90 million people) are β-thalassemia carriers. However, exact data on carrier rates in many populations are lacking, particularly in developing areas of the world known or expected to be heavily affected. Because of the prevalence of the disease in countries with little knowledge of thalassemia, access to proper treatment and diagnosis can be difficult. While there are some diagnostic and treatment facilities in developing countries, in most cases these are not provided by government services, and are available only to patients that can afford them. In general, poorer populations only have access to limited diagnostic facilities together with blood transfusions. In some developing countries, there are virtually no facilities for diagnosis or management of thalassemia.
The diagnosis of Hb Lepore syndrome may be performed antenatally or postnatally via the use of a variety of tests
- Complete blood count (CBC)
- Cation Exchange High-performance liquid chromatography (CE-HPLC): a chromatographic technique used to separate and quantify various normal and abnormal hemoglobin components in blood.
- Hemoglobin electrophoresis
- DNA analysis:
Hemoglobin Lepore syndrome or Hb Lepore syndrome (Hb Lepore) is typically an asymptomatic hemoglobinopathy, which is caused by an autosomal recessive genetic mutation. The Hb Lepore variant, consisting of two normal alpha globin chains (HBA) and two deltabeta globin fusion chains which occurs due to a "crossover" between the delta (HBD) and beta globin (HBB) gene loci during meiosis and was first identified in an Italian family in 1958. There are three varieties of Hb Lepore, Washington (Hb Lepore Washington, AKA Hb Lepore Boston or Hb Lepore Washington-Boston), Baltimore (Hb Lepore Baltimore) and Hollandia (Hb Hollandia). All three varieties show similar electrophoretic and chromatographic properties and hematological findings bear close resemblance to those of the beta-thalassemia trait; a blood disorder that reduces the production of the iron-containing protein hemoglobin which carries oxygen to cells and which may cause anemia.
The homozygous state for Hb Lepore is rare. Patients of Balkan descent tend to have the most severe presentation of symptoms including severe anemia during the first five years of life. They also presented with significant splenomegaly, hepatomegaly, and skeletal abnormalities identical to those of homozygous beta-thalassemia. The amount of Hb Lepore in the patients blood ranged from 8 to 30%, the remainder being fetal hemoglobin (Hb F) which is present in minute quantities (typically<1 percent) in the red blood cells of adults. Known as F- cells they are present in a small proportion of overall RBCs.
Homozygous Hb Lepore is similar to beta-thalassemia major; however, the clinical course is variable. Patients with this condition typically present with severe anemia during the first two years of life. The heterozygote form is mildly anemic (Hb 11-13 g/dl) but presents with a significant hypochromia (deficiency of hemoglobin in the red blood cells) and microcytosis.
LID is present in stage 1 and 2, before anemia occurs in stage 3. These first two stages can be interpreted as depletion of iron stores and reduction of effective iron transport.
Stage 1 is characterized by loss of bone marrow iron stores while hemoglobin and serum iron levels remain normal. Serum ferritin falls to less than 20 ng/mL. Increased iron absorption, a compensatory change, results in an increased amount transferrin and consequent increased iron-binding capacity.
Stage 2 - Erythropoiesis is impaired. In spite of an increased level of transferrin, serum iron level is decreased along with transferrin saturation. Erythropoiesis impairment begins when the serum iron level falls to less than 50 μg/dL and transferrin saturation is less than 16%.
In stage 3, anemia (reduced hemoglobin levels) is present but red blood cell appearance remains normal.
Changes in the appearance of red blood cells are the hallmark of stage 4; first microcytosis and then hypochromia develop.
Iron deficiency begins to affect tissues in stage 5, manifesting as symptoms and signs.
Latent iron deficiency (LID), also called iron-deficient erythropoiesis, is a medical condition in which there is evidence of iron deficiency without anemia (normal hemoglobin level). It is important to assess this condition because it is accepted that individuals with latent iron deficiency will develop iron-deficiency anemia in the weeks or months following diagnoses of LID if they are not treated with iron supplementation. In addition, there is some evidence of a decrease in vitality and an increase in fatigue among individuals that have LID.
The clinical features of LID are in discussion, some studies have not shown a clear difference between individuals with LID and control a group of the same age, gender and origin without LID. But may be it is not wrong to say that the persons with LID have a mild decrease in vitality and increase of fatigue. What seems important for preventive healthcare is to detect this medical condition, because it will avoid the patient probably developing an iron-deficiency anemia.
Cigar cells (also referred to as pencil cells) are red blood cells that are cigar or pencil shaped on Peripheral blood smear. Cigar cells are commonly associated with hereditary elliptocytosis. However, they may also be seen in iron deficiency anemia and other pathological states that decrease red blood cell turnover and or production. In the case of iron deficiency anemia, microcytosis and hypochromia would also be expected.
In acute poisoning, typical neurological signs are pain, muscle weakness, numbness and tingling, and, rarely, symptoms associated with inflammation of the brain. Abdominal pain, nausea, vomiting, diarrhea, and constipation are other acute symptoms. Lead's effects on the mouth include astringency and a metallic taste. Gastrointestinal problems, such as constipation, diarrhea, poor appetite, or weight loss, are common in acute poisoning. Absorption of large amounts of lead over a short time can cause shock (insufficient fluid in the circulatory system) due to loss of water from the gastrointestinal tract. Hemolysis (the rupture of red blood cells) due to acute poisoning can cause anemia and hemoglobin in the urine. Damage to kidneys can cause changes in urination such as decreased urine output. People who survive acute poisoning often go on to display symptoms of chronic poisoning.
Chronic poisoning usually presents with symptoms affecting multiple systems, but is associated with three main types of symptoms: gastrointestinal, neuromuscular, and neurological. Central nervous system and neuromuscular symptoms usually result from intense exposure, while gastrointestinal symptoms usually result from exposure over longer periods. Signs of chronic exposure include loss of short-term memory or concentration, depression, nausea, abdominal pain, loss of coordination, and numbness and tingling in the extremities. Fatigue, problems with sleep, headaches, stupor, slurred speech, and anemia are also found in chronic lead poisoning. A "lead hue" of the skin with pallor and/or lividity is another feature. A blue line along the gum with bluish black edging to the teeth, known as a Burton line, is another indication of chronic lead poisoning. Children with chronic poisoning may refuse to play or may have hyperkinetic or aggressive behavior disorders. Visual disturbance may present with gradually progressing blurred vision as a result of central scotoma, caused by toxic optic neuritis.