Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The key features of this syndrome are an enlargement of the fourth ventricle; complete absence of the cerebellar vermis, the posterior midline area of cerebellar cortex responsible for coordination of the axial musculature; and cyst formation near the internal base of the skull. An increase in the size of the fluid spaces surrounding the brain as well as an increase in pressure may also be present. The syndrome can appear dramatically or develop unnoticed.
Symptoms, which often occur in early infancy, include slower motor development and progressive enlargement of the skull. In older children, symptoms of increased intracranial pressure such as irritability, vomiting, and convulsions and signs of cerebellar dysfunction such as unsteadiness and lack of muscle coordination or jerky movements of the eyes may occur. Other symptoms include increased head circumference, bulging at the back of the skull, problems with the nerves that control the eyes, face and neck, and abnormal breathing patterns.
Dandy–Walker syndrome is frequently associated with disorders of other areas of the central nervous system including absence of the corpus callosum, the bundle of axons connecting the two cerebral hemispheres, and malformations of the heart, face, limbs, fingers and toes.
The Dandy–Walker complex is a genetically sporadic disorder that occurs one in every 30,000 live births. Prenatal diagnosis and prognosis of outcomes associated with Dandy–Walker can be difficult. Prenatal diagnosis is possible with ultrasound. Because the syndrome is associated with an increased risk for fetal karyotype abnormalities, amniocentesis can be offered after prenatal diagnosis. There is a relative contraindication of taking Warfarin during pregnancy, as it is associated with an increased risk of Dandy–Walker syndrome if taken during the first trimester.
The DWS malformation is the most severe presentation of the syndrome. The posterior fossa is enlarged and the tentorium is in high position. There is complete agenesis of the cerebellar vermis. There is also cystic dilation of the fourth ventricle, which fills the posterior fossa. This often involves hydrocephalus and complications due to associated genetic conditions, such as Spina Bifida.
Microlissencephaly with mildly to moderately thick (6–8 mm) cortex, callosal agenesis
Microlissencephaly Type B or Barth microlissencephaly syndrome: is a microlissencephaly with thick cortex, severe cerebellar and brainstem hypoplasia. The Barth-type of MLIS is the most severe of all the known lissencephaly syndromes.
This phenotype consists of polyhydramnios (probably due to poor fetal swallowing), severe congenital microcephaly, weak respiratory effort, and survival for only a few hours or days. Barth described two siblings with this type as having a very low brainweight, wide ventricles, a very thin neopallium, absent corpus callosum and absent olfactory nerve.
Neu-Laxova syndrome presents with severe malformations leading to prenatal or neonatal death. Typically, NLS involves characteristic facial features, decreased fetal movements and skin abnormalities.
Fetuses or newborns with Neu–Laxova syndrome have typical facial characteristics which include proptosis (bulging eyes) with eyelid malformations, nose malformations, round and gaping mouth, micrognathia (small jaw) and low set or malformed ears. Additional facial malformations may be present, such as cleft lip or cleft palate. Limb malformations are common and involve the fingers (syndactyly), hands or feet. Additionally, edema and flexion deformities are often present. Other features of NLS are severe intrauterine growth restriction, skin abnormalities (ichthyosis and hyperkeratosis) and decreased movement.
Malformations in the central nervous system are frequent and may include microcephaly, lissencephaly or microgyria, hypoplasia of the cerebellum and agenesis of the corpus callosum. Other malformations may also be present, such as neural tube defects.
Heart abnormalities are present in 25–35% of people with distal 18q-. The majority of these defects are septal. Congenital orthopedic anomalies are also relatively common, particularly rocker-bottom feet or clubfoot. Cleft lip and palate are relatively common in people with distal 18q-. Kidney abnormalities have also been reported and include horseshoe kidney, hydronephrosis, polycystic kidney, and absent kidney. Boys with distal 18q- may have genital anomalies, the most frequent being cryptorchidism and hypospadias.
Hypotonia is a common finding. Around 10% of people with distal 18q- have seizures.
Oculocerebrocutaneous syndrome (also known as Delleman–Oorthuys syndrome) is a condition characterized by orbital cysts, microphthalmia, porencephaly, agenesis of the corpus callosum, and facial skin tags.
Aicardi syndrome is a rare genetic malformation syndrome characterized by the partial or complete absence of a key structure in the brain called the corpus callosum, the presence of retinal abnormalities, and seizures in the form of infantile spasms. Aicardi syndrome is theorized to be caused by a defect on the X chromosome as it has thus far only been observed in girls or in boys with Klinefelter syndrome. Confirmation of this theory awaits the discovery of a causative gene. Symptoms typically appear before a baby reaches about 5 months of age.
Usually associated with diaphragmatic hernia,
pulmonary hypoplasia,
imperforate anus,
micropenis,
bilateral cryptorchidism,
cerebral ventricular dilation,
camptodactyly,
agenesis of sacrum,
low-set ear.
- Fryns et al. (1979) reported 2 stillborn sisters with a multiple congenital anomaly syndrome characterized by coarse facies with cloudy corneae, diaphragmatic defects, absence of lung lobulation, and distal limb deformities. A sporadic case was reported by Goddeeris et al. (1980). Fitch (1988) claimed that she and her colleagues were the first to describe this disorder. In 1978 they reported a single infant, born of second-cousin parents, who had absent left hemidiaphragm, hydrocephalus, arhinencephaly, and cardiovascular anomalies.
- Lubinsky et al. (1983) reported a brother and sister with Fryns syndrome who both died in the neonatal period. Facial anomalies included broad nasal bridge, microretrognathia, abnormal helices, and cleft palate. Other features included distal digital hypoplasia, lung hypoplasia, and urogenital abnormalities, including shawl scrotum, uterus bicornis, and renal cysts. They were discordant for diaphragmatic hernia, cleft lip, and Dandy–Walker anomaly.
- Meinecke and Fryns (1985) reported an affected child; consanguinity of the parents supported recessive inheritance. They noted that a diaphragmatic defect had been described in 4 of the 5 reported cases and lung hypoplasia in all. Young et al. (1986) reported a sixth case. The male infant survived for 12 days. These authors listed corneal clouding, camptodactyly with hypoplastic nails, and abnormalities of the diaphragm as cardinal features.
- Samueloff et al. (1987) described a family in which all 4 children had Fryns syndrome and neonatal mortality. Features included hypoplastic lungs, cleft palate, retrognathia, micrognathism, small thorax, diaphragmatic hernia, distal limb hypoplasia, and early onset of polyhydramnios with premature delivery. Schwyzer et al. (1987) described an affected infant whose parents were second cousins.
- Moerman et al. (1988) described infant brother and sister with the syndrome of diaphragmatic hernia, abnormal face, and distal limb anomalies. Both died shortly after birth with severe respiratory distress. Ultrasonography demonstrated fetal hydrops, diaphragmatic hernia, and striking dilatation of the cerebral ventricles in both infants. Post-mortem examination showed Dandy–Walker malformation, ventricular septal defect, and renal cystic dysplasia.
- Cunniff et al. (1990) described affected brothers and 3 other cases, bringing the total reported cases of Fryns syndrome to 25. One of the affected brothers was still alive at the age of 24 months. Bilateral diaphragmatic hernias had been repaired on the first day of life. He required extracorporeal membrane oxygenation therapy for 5 days and oscillatory therapy for 3 months. Ventriculoperitoneal shunt was required because of slowly progressive hydrocephalus. Scoliosis was associated with extranumerary vertebral bodies and 13 ribs. Because of delayed gastric emptying, a gastrostomy tube was inserted. In addition, because of persistent chylothorax, he underwent decortication of the right lung and oversewing of the thoracic duct.
- Kershisnik et al. (1991) suggested that osteochondrodysplasia is a feature of Fryns syndrome.
- Willems et al. (1991) suggested that a diaphragmatic hernia is not a necessary feature of Fryns syndrome. They described a child with all the usual features except for diaphragmatic hernia; the diaphragm was reduced to a fibrous web with little muscular component. Bartsch et al. (1995) presented 2 unrelated cases with a typical picture of Fryns syndrome but without diaphragmatic hernia. One of these patients was alive at the age of 14 months, but was severely retarded. Bamforth et al. (1987) and Hanssen et al. (1992) also described patients with this syndrome who survived the neonatal period. In the report of Hanssen et al. (1992), 2 older sibs had died in utero. The reports suggested that survival beyond the neonatal period is possible when the diaphragmatic defect and lung hypoplasia are not present. However, mental retardation has been present in all surviving patients.
- Vargas et al. (2000) reported a pair of monozygotic twins with Fryns syndrome discordant for severity of diaphragmatic defect. Both twins had macrocephaly, coarse facial appearance, hypoplasia of distal phalanges, and an extra pair of ribs. Twin A lacked an apparent diaphragmatic defect, and at 1 year of age had mild developmental delay. Twin B had a left congenital diaphragmatic hernia and died neonatally. The authors suggested that absence of diaphragmatic defect in Fryns syndrome may represent a subpopulation of more mildly affected patients.
- Aymé, "et al." (1989) described 8 cases of Fryns syndrome in France. The most frequent anomalies were diaphragmatic defects, lung hypoplasia, cleft lip and palate, cardiac defects, including septal defects and aortic arch anomalies, renal cysts, urinary tract malformations, and distal limb hypoplasia. Most patients also had hypoplastic external genitalia and anomalies of internal genitalia, including bifid or hypoplastic uterus or immature testes. The digestive tract was also often abnormal; duodenal atresia, pyloric hyperplasia, malrotation and common mesentery were present in about half of the patients. When the brain was examined, more than half were found to have Dandy–Walker anomaly and/or agenesis of the corpus callosum. A few patients demonstrated cloudy cornea. Histologically, 2 of 3 patients showed retinal dysplasia with rosettes and gliosis of the retina, thickness of the posterior capsule of the lens, and irregularities of Bowman membrane.
- Alessandri et al. (2005) reported a newborn from the Comores Islands with clinical features of Fryns syndrome without diaphragmatic hernia. They noted that diaphragmatic hernia is found in more than 80% of cases and that at least 13 other cases had been reported with an intact diaphragm.
- In a postneonatal survivor of Fryns syndrome, Riela et al. (1995) described myoclonus appearing shortly after birth, which was well controlled on valproate. Progressive cerebral and brainstem atrophy was noted on serial MRIs made at 3 months and after 6 months of age.
- Van Hove et al. (1995) described a boy with Fryns syndrome who survived to age 3 years and reviewed the outcome of other reported survivors (approximately 14% of reported cases). Survivors tended to have less frequent diaphragmatic hernia, milder lung hypoplasia, absence of complex cardiac malformation, and severe neurologic impairment. Their patient had malformations of gyration and sulcation, particularly around the central sulcus, and hypoplastic optic tracts beyond the optic chiasm associated with profound mental retardation.
- Fryns and Moerman (1998) reported a second-trimester male fetus with Fryns syndrome and midline scalp defects. The authors stated that the finding of a scalp defect in Fryns syndrome confirms that it is a true malformation syndrome with major involvement of the midline structures.
- Ramsing et al. (2000) described 2 sibships with 4 fetuses and 1 preterm baby of 31 weeks' gestation affected by a multiple congenital disorder suggestive of Fryns syndrome. In addition to the diaphragmatic defects and distal limb anomalies, they presented with fetal hydrops, cystic hygroma, and multiple pterygias. Two affected fetuses in 1 family showed severe craniofacial abnormalities with bilateral cleft lip and palate and cardiovascular malformation.
- Arnold et al. (2003) reported a male fetus with Fryns syndrome and additional abnormalities, in particular, multiple midline developmental defects including gastroschisis, central nervous system defects with left arrhinencephaly and cerebellar hypoplasia, midline cleft of the upper lip, alveolar ridge, and maxillary bone, and cleft nose with bilateral choanal atresia.
- Pierson et al. (2004) reviewed 77 reported patients with Fryns syndrome and summarized the abnormal eye findings identified in 12 of them. They also described 3 new patients with Fryns syndrome, 1 of whom demonstrated unilateral microphthalmia and cloudy cornea.
- Slavotinek et al. (2005) noted that Fryns syndrome may be the most common autosomal recessive syndrome in which congenital diaphragmatic hernia (see DIH2, 222400) is a cardinal feature. The autosomal recessive inheritance in Fryns syndrome contrasts with the sporadic inheritance for most patients with DIH.
Children are most commonly identified with Aicardi syndrome before the age of five months. A significant number of girls are products of normal births and seem to be developing normally until around the age of three months, when they begin to have infantile spasms. The onset of infantile spasms at this age is due to closure of the final neural synapses in the brain, a stage of normal brain development. A number of tumors have been reported in association with Aicardi syndrome: choroid plexus papilloma (the most common), medulloblastoma, gastric hyperplastic polyps, rectal polyps, soft palate benign teratoma, hepatoblastoma, parapharyngeal embryonal cell cancer, limb angiosarcoma and scalp lipoma.
Symptoms of holoprosencephaly range from mild (no facial/organ defects, anosmia, or only a single central incisor) to moderate to severe (cyclopia).
There are four classifications of holoprosencephaly.
- Alobar holoprosencephaly, the most serious form, in which the brain fails to separate, is usually associated with severe facial anomalies, including lack of a nose and the eyes merged to a single median structure, see Cyclopia
- Semilobar holoprosencephaly, in which the brain's hemispheres have somewhat divided, is an intermediate form of the disease.
- Lobar holoprosencephaly, in which there is considerable evidence of separate brain hemispheres, is the least severe form. In some cases of lobar holoprosencephaly, the patient's brain may be nearly normal.
- Syntelencephaly, or middle interhemispheric variant of holoprosencephaly (MIHV), in which the posterior frontal lobe and the parietal lobe are not properly separated, but the rostrobasal forebrain properly separates; it is possible that this is not a variant of HPE at all, but is currently classified as such.
- Agenesis of the corpus callosum, in which there is a complete or partial absence of the corpus callosum. It occurs when the corpus callosum, the band of white matter connecting the two hemispheres in the brain, fails to develop normally, typically during pregnancy. The fibers that would otherwise form the corpus callosum become longitudinally oriented within each hemisphere and form structures called Probst bundles.
Holoprosencephaly consists of a spectrum of defects or malformations of the brain and face. At the most severe end of this spectrum are cases involving serious malformations of the brain, malformations so severe that they often cause miscarriage or stillbirth. At the other end of the spectrum are individuals with facial defects which may affect the eyes, nose, and upper lip - and normal or near-normal brain development. Seizures and mental retardation may occur.
The most severe of the facial defects (or anomalies) is cyclopia, an abnormality characterized by the development of a single eye, located in the area normally occupied by the root of the nose, and a missing nose or a nose in the form of a proboscis (a tubular appendage) located above the eye. The condition is also referred to as cyclocephaly or synophthalmia, and is very rare.
Most of the signs of MWS are present during the neonatal period. The most common signs at this state are multiple congenital joint contractures, dysmorphic features with mask-like face, blepharophimosis, ptosis, micrognathia, cleft or high arched palate, low-set ears, arachnodactyly, chest deformation as pectus, kyphoscoliosis and absent deep tendon reflexes are frequent minor malformations have also been described and consist of renal anomalies, cardiovascular abnormalities, hypospadias, omphalomesenteric duct, hypertriphic pyloric stenosis, duodenal bands, hyoplastic right lower lobe of the lung, displacement of the larynx to the right and vertebral abnormalities, cerebral malformations.
- 75% of children with MWS have blepharophimosis, small mouth, micrognathia, kyphosis/scoliosis, radio ulnar synostose and multiple contractures.
- They have severe developmental delay; congenital joint contractures and blepharophimosis should be present in every patient
- 2 out of 3 of the following signs should be manifested: post natal growth, mask-like faces, retardation, and decreased muscular mass.
- Some may require additional signs such as; micrognathia, high arched or cleft palate, low set ears, kyphoscoliosis.
- The symptoms of MWS are normally diagnosed during the newborn period
This syndrome consists a number of typical features. These include
- Agenesis of the corpus callosum (80-99% patients)
- Hypopigmentation of the eyes and hair (80-99% patients)
- Cardiomyopathy (80-99% patients)
- Combined immunodeficiency (80-99% patients)
- Muscular hypotonia (80-99% patients)
- Abnormality of retinal pigmentation (80-99% patients)
- Recurrent chest infections (80-99% patients)
- Abnormal EEG (80-99% patients)
- Intellectual disability (80-99% patients)
- Cataracts (75%)
- Seizures (65%)
- Renal abnormalities (15%)
Infections of the gastrointestinal and urinary tracts are common. Swallowing and feeding difficulties early on may result in a failure to thrive. Optic nerve hypoplasia, nystagmus and photophobia may occur. Facial dysmorphism (cleft lip/palate and micrognathia) and syndactyly may be present. Sensorineural hearing loss may also be present.
Death in infancy is not uncommon and is usually due to cardiac complications or severe infections.
Genitopatellar syndrome is a rare condition characterized by genital abnormalities, missing or underdeveloped kneecaps (patellae), intellectual disability, and abnormalities affecting other parts of the body.
Genitopatellar syndrome is also associated with delayed development and intellectual disability, which are often severe. Affected individuals may have an unusually small head (microcephaly) and structural brain abnormalities, including underdeveloped or absent tissue connecting the left and right halves of the brain (agenesis of the corpus callosum).
Various degrees of intensity and locations of epilepsy are associated with malformations of cortical development. Researchers suggest that approximately 40% of children diagnosed with drug-resistant epilepsy have some degree of cortical malformation.
Lissencephaly (to which pachygyria is most closely linked) is associated with severe mental retardation, epilepsy, and motor disability. Two characteristics of lissencephaly include its absence of convolutions (agyria) and decreased presence of convolutions (pachygyria). The types of seizures associated with lissencephaly include:
- persisting spasms
- focal seizures
- tonic seizures
- atypical seizures
- atonic seizures
Other possible symptoms of lissencephaly include telecanthus, estropia, hypertelorism, varying levels of mental retardation, cerebellar hypoplasia, corpus callosum aplasia, and decreased muscle tone and tendon reflexes. Over 90% of children affected with lissencephaly have seizures.
Patients with subcortical band heterotopia (another disorder associated with pachygyria) typically have milder symptoms and their cognitive function is closely linked to the thickness of the subcortical band and the degree of pachygyria present.
Fryns syndrome is an autosomal recessive multiple congenital anomaly syndrome that is usually lethal in the neonatal period. Fryns (1987) reviewed the syndrome.
Some syndromes that frequently include ACC are Aicardi syndrome, Andermann syndrome, Shapiro syndrome, acrocallosal syndrome, septo-optic dysplasia (optic nerve hypoplasia), Mowat–Wilson syndrome, John Sayden syndrome, Menkes syndrome, and L1CAM Syndrome. Some conditions that are sometimes associated with ACC include maternal nutritional deficiencies or infections, metabolic disorders, fetal alcohol syndrome, craniofacial abnormalities, and other oral and maxillofacial pathologies.
Symptoms vary according to the abnormality, but often feature poor muscle tone and motor function, seizures, developmental delays, mental retardation, failure to grow and thrive, difficulties with feeding, swelling in the extremities, and a smaller than normal head. Most infants with an NMD appear normal, but some disorders have characteristic facial or skull features that can be recognized by a neurologist.
Neu–Laxova syndrome (also known as Neu syndrome or Neu-Povysilová syndrome, abbreviated as NLS) is a rare autosomal recessive disorder characterized by severe intrauterine growth restriction and multiple congenital malformations. Neu–Laxova syndrome is a very severe disorder, leading to stillbirth or neonatal death. It was first described by Dr. Richard Neu in 1971 and Dr. Renata Laxova in 1972 as a lethal disorder in siblings with multiple malformations. Neu–Laxova syndrome is an extremely rare disorder with less than 100 cases reported in medical literature.
Symptoms vary, but usually result in dysmorphisms in the skull, nervous system, and developmental delay. Dysmorphisms in the heart, kidneys, and musculoskeletal system may also occur. An infant with complete trisomy 9 surviving 20 days after birth showed clinical features including a small face, wide fontanelle, prominent occiput, micrognathia, low set ears, upslanting palpebral fissures, high-arched palate, short sternum, overlapping fingers, limited hip abduction, rocker bottom feet, heart murmurs and also a webbed neck.
Trisomy 9p is one of the most frequent autosomal anomalies compatible with long survival rate. A study of five cases showed an association with Coffin–Siris syndrome, as well as a wide gap between the first and second toes in all five, while three had brain malformations including dilated ventricles with hypogenesis of the corpus callosum and Dandy-Walker malformation.
Different areas of deletion are associated with different symptoms. Deletions from the centromere to 13q32 or any deletions including the 13q32 band are associated with slow growth, intellectual disability, and congenital malformations. Deletions from 13q33 to the end of the chromosome are associated with intellectual disability. Intellectual disabilities range from very mild to very severe, and can co-occur with behavioral disorders and/or autism spectrum disorders.
At birth, the main symptoms include low weight (due to intrauterine growth restriction), hypotonia, and feeding difficulties. Infants may also have cleft palate.
13q deletion syndrome gives a characteristic appearance to affected individuals, potentially including microphthalmia (small eyes), hypertelorism (wide-set eyes), thin forehead, high palate, underdeveloped midface, small mouth, small nose, broad, flat nasal bridge, short neck, low hairline, irregular or wrongly positioned teeth, low-set ears, micrognathia (small jaw), tooth enamel defects, short stature, microcephaly (small head), a prominent, long philtrum, and earlobes turned inwards.
Congenital heart disease is associated with 13q deletion syndrome. Common defects include atrial septal defect, tetralogy of Fallot, ventricular septal defect, patent ductus arteriosus, pulmonary stenosis, and coarctation of the aorta. Defects of the endocrine system, digestive system, and genitourinary system are also common. These include underdevelopment or agenesis of the pancreas, adrenal glands, thymus, gallbladder, and thyroid; Hirschsprung's disease; gastric reflux, imperforate anus, retention testis, ectopic kidney, renal agenesis, and hydronephrosis.
A variety of brain abnormalities are also associated with 13q deletion. They can include epilepsy, craniosynostosis (premature closing of the skull bones), spastic diplegia, cerebral hypotrophy, underdevelopment or agenesis of the corpus callosum, cerebellar hypoplasia, deafness, and, rarely, hydrocephalus, Dandy–Walker syndrome, and spina bifida. The eyes can be severely damaged and affected individuals may be blind. They may also have coloboma of the iris or choroid, strabismus, nystagmus, glaucoma, or cataracts.
Other skeletal malformations are found with 13q deletion syndrome, including syndactyly, clubfoot, clinodactyly, and malformations of the vertebrae and/or thumbs.
Deletions that include the 13q32 band, which contains the brain development gene ZIC2, are associated with holoprosencephaly; they are also associated with hand and foot malformations. Deletions that include the 13q14 band, which contains the tumor suppressor gene Rb, are associated with a higher risk of developing retinoblastoma, which is more common in XY children. Deletion of the 13q33.3 band is associated with hypospadias. Other genes in the potentially affected region include NUFIP1, HTR2A, PDCH8, and PCDH17.
There are various symptoms of colpocephaly and patients can experience effects ranging from mild to severe. Some patients do not show most of the symptoms related to colpocephaly, such as psychomotor abnormalilities and agenesis of the corpus callosum. In some cases, signs appear later on in life and a significant number of children suffer only from minor disabilities.
The following list includes common symptoms of colpocephaly.
- partial or complete agenesis of the corpus callosum
- intellectual disability
- motor abnormalities
- visual defects such as, crossing of the eyes, missing visual fields, and optic nerve hypoplasia
- spasticity
- seizures
- cerebral palsy
Intracranial abnormalities include:
- Microcephaly
- Agenesis of the corpus callosum
- Meningomyelocele
- Lissencephaly
- Periventricular leukomalacia (PVL)
- Enlargement of the cisterna magna
- Cerebellar hypoplasia
The natural history of MWS is not well known: many patients died in infancy and clinical follow-up has been reported in few surviving adults. However, diagnosis may be more difficult to establish in adults patients, such as: blepharophimosis, contractures, growth retardation, and developmental delay, whereas minor face anomalies are less noticeable as the patient grows older. Throughout the development of the patient from young child to older adult changes the behavior drastically, from kindness to restless and hyperactive to aggressive.
Callosal disorders can be diagnosed through brain imaging studies or during autopsy. They may be diagnosed through an MRI, CT scan, Sonography, prenatal ultrasound, or prenatal MRI.