Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The brain is abnormally smooth, with fewer folds and grooves. The face, especially in children, has distinct characteristics including a short nose with upturned nares, thickened upper lip with a thin vermilion upper border, frontal bossing, small jaw, low-set posteriorily rotated ears, sunken appearance in the middle of the face, widely spaced eyes, and hypertelorism. The forehead is prominent with bitemporal hollowing.
Characteristics that are not visual include mental retardation, pre- and postnatal growth retardation, epilepsy, and reduced lifespan.
Failure to thrive, feeding difficulties, seizures and decreased spontaneous activity are often seen. Death usually occurs in infancy and childhood.
Multiple abnormalities of the brain, kidneys, and gastrointestinal tract (the stomach and intestines) may occur.
Miller–Dieker syndrome (abbreviated MDS), Miller–Dieker lissencephaly syndrome (MDLS), and chromosome 17p13.3 deletion syndrome is a micro deletion syndrome characterized by congenital malformations. Congenital malformations are physical defects detectable in an infant at birth which can involve many different parts of the body including the brain, hearts, lungs, liver, bones, or intestinal tract.
MDS is a contiguous gene syndrome - a disorder due to the deletion of multiple gene loci adjacent to one another. The disorder arises from the deletion of part of the small arm of chromosome 17p (which includes both the "LIS1" and "14-3-3 epsilon" genes), leading to partial monosomy. There may be unbalanced translocations (i.e. 17q:17p or 12q:17p), or the presence of a ring chromosome 17.
This syndrome should not be confused with Miller syndrome, an unrelated rare genetic disorder, or Miller Fisher syndrome, a form of Guillain–Barré syndrome.
Facial features of children with Smith–Magenis syndrome include a broad face, deep-set eyes, large cheeks, and a prominent jaw, as well as a flat nose bridge. The mouth curves downwards and the upper lip curves outwards. These facial features become more noticeable as the individual ages.
Disrupted sleep patterns are characteristic of Smith–Magenis syndrome, typically beginning early in life. Affected people may be very sleepy during the day, but have trouble falling asleep and awaken several times each night, due to an inverted circadian rhythm of melatonin.
People with Smith–Magenis syndrome have engaging personalities, but all also have a lot of behavioral problems. These behavioral problems include frequent temper tantrums, meltdowns and outbursts, aggression, anger, fidgeting, compulsive behavior, anxiety, impulsiveness, and difficulty paying attention. Self-harm, including biting, hitting, head banging, and skin picking, is very common. Repetitive self-hugging is a behavioral trait that may be unique to Smith–Magenis syndrome. People with this condition may also compulsively lick their fingers and flip pages of books and magazines (a behavior known as "lick and flip"), as well as possessing an impressive ability to recall a wide range of small details about people or subject-specific trivia.
Other symptoms can include short stature, abnormal curvature of the spine (scoliosis), reduced sensitivity to pain and temperature, and a hoarse voice. Some people with this disorder have ear abnormalities that lead to hearing loss. Affected individuals may have eye abnormalities that cause nearsightedness (myopia), strabismus, and other problems with vision. Heart and kidney defects also have been reported in people with Smith–Magenis syndrome, though they are less common.
Micro syndrome can be identified in people several ways, one of the most common is ocular problems or other physical traits that don't appear natural. It is especially easy to identify micro syndrome in infants and in younger children. Intellectual or developmental disabilities can seriously affect a patient in the way they think and move. So far according to studies all patients have had serious intellectual or developmental disabilities, and hypotonia is found in all the patients during infancy.
Orofaciodigital syndrome type 1 is diagnosed through genetic testing. Some symptoms of Orofaciodigital syndrome type 1 are oral features such as, split tongue, benign tumors on the tongue, cleft palate, hypodontia and other dental abnormalities. Other symptoms of the face include hypertelorism and micrognathia. Bodily abnormalities such as webbed, short, joined, or abnormally curved fingers and toes are also symptoms of Orofaciodigital syndrome type 1. The most frequent symptoms are accessory oral frenulum, broad alveolar ridges, frontal bossing, high palate, hypertelorism, lobulated tongue, median cleft lip, and wide nasal bridge. Genetic screening of the OFD1 gene is used to officially diagnose a patient who has the syndrome, this is detected in 85% of individuals who are suspected to have Orofaciodigital syndrome type 1.
The rare cases that have been examined are often within families, or the people that have cases of micro syndrome have a mutation in their genes.
It can be associated with "RAB3GAP".
Orofaciodigital syndrome 1 (OFD1), also called Papillon-League and Psaume syndrome, is an X-linked congenital disorder characterized by malformations of the face, oral cavity, and digits with polycystic kidney disease and variable involvement of the central nervous system.
The most common symptoms of Williams syndrome are heart defects and unusual facial features. Other symptoms include failure to gain weight appropriately in infancy (failure to thrive) and low muscle tone. Individuals with Williams syndrome tend to have widely spaced teeth, a long philtrum, and a flattened nasal bridge.
Most individuals with Williams syndrome are highly verbal relative to their IQ, and are overly sociable, having what has been described as a "cocktail party" type personality. Individuals with WS hyperfocus on the eyes of others in social engagements.
Smith–Magenis Syndrome (SMS) is a genetic disorder with features including intellectual disability, facial abnormalities, difficulty sleeping, and numerous behavioral problems such as self-harm. Smith–Magenis syndrome affects an estimated between 1 in 15,000 to 1 in 25,000 individuals.
It is a microdeletion syndrome characterized by an abnormality in the short (p) arm of chromosome 17 and is sometimes called the 17p- syndrome.
Chromosomal deletion syndromes result from deletion of parts of chromosomes. Depending on the location, size, and whom the deletion is inherited from, there are a few known different variations of chromosome deletions. Chromosomal deletion syndromes typically involve larger deletions that are visible using karyotyping techniques. Smaller deletions result in Microdeletion syndrome, which are detected using fluorescence in situ hybridization (FISH)
Examples of chromosomal deletion syndromes include 5p-Deletion (cri du chat syndrome), 4p-Deletion (Wolf-Hirschhorn syndrome), Prader–Willi syndrome, and Angelman syndrome.
Williams syndrome (WS) is a developmental disorder that affects many parts of the body. Facial features frequently include a broad forehead, short nose, and full cheeks, an appearance that has been described as "elfin". Mild to moderate intellectual disability with particular problems with visual spatial tasks such as drawing and fewer problems with language are typical. Those affected often have an outgoing personality and interact readily with strangers. Problems with teeth, heart problems, especially supravalvular aortic stenosis, and periods of high blood calcium are common.
Williams syndrome is caused by a genetic abnormality, specifically a deletion of about 27 genes from the long arm of one of the two chromosome 7s. Typically this occurs as a random event during the formation of the egg or sperm from which a person develops. In a small number of cases it is inherited from an affected parent in an autosomal dominant manner. The different characteristic features have been linked to the loss of specific genes. The diagnosis is typically suspected based on symptoms and confirmed by genetic testing.
Treatment includes special education programs and various types of therapy. Surgery may be done to correct heart problems. Dietary changes or medications may be required for high blood calcium. The syndrome was first described in 1961 by New Zealander John C. P. Williams. Williams syndrome affects between 1 in 7,500 to 1 in 20,000 people at birth. Life expectancy is less than that of the general population mostly due to the increased rates of heart disease.
Kostmann syndrome is a group of diseases that affect myelopoiesis, causing a congenital form of neutropenia (severe congenital neutropenia [SCN]), usually without other physical malformations. SCN manifests in infancy with life-threatening bacterial infections.
Most cases of SCN respond to treatment with granulocyte colony-stimulating factor (filgrastim), which increases the neutrophil count and decreases the severity and frequency of infections. Although this treatment has significantly improved survival, people with SCN are at risk of long-term complications such as hematopoietic clonal disorders (myelodysplastic syndrome, acute myeloid leukemia).
Kostmann disease (SCN3), the initial subtype recognized, was clinically described in 1956. This type has an autosomal recessive inheritance pattern, whereas the most common subtype of Kostmann syndrome, SCN1, shows autosomal dominant inheritance.
Infants with SCN have frequent infections: 50% have a significant infection within 1 month, most others by 6 months. Their etiology is usually bacterial, especially staphylococcal, and they commonly involve abscesses, both cutaneous and of internal organs, pneumonia, mastoiditis (inflammation of the mastoid process), and sepsis. All of these are life-threatening for infants.
Microstomia ("micro-" a combining form meaning small + "-stomia" a combining form meaning mouth = (abnormally) "small mouth") is a clinical feature of many craniofacial syndromes, including Freeman-Sheldon syndrome and Sheldon-Hall syndromes (or distal arthrogryposis multiplex congenita). It may present with whistling-face feature, as well, as in Freeman-Sheldon syndrome. In this syndrome, it impairs alimentation and may require repeated oral surgeries (called commissurotomy) to improve function.
It can also be a feature of systemic scleroderma.
Autoimmune polyendocrine syndrome type 1 (APS-1), also known as autoimmune polyendocrinopathy-candidiasis–ectodermal dystrophy/dysplasia (APECED), autoimmune polyglandular syndrome type 1, Whitaker syndrome, or candidiasis-hypoparathyroidism–Addison's disease syndrome, is a subtype of autoimmune polyendocrine syndrome (autoimmune polyglandular syndrome) in which multiple endocrine glands dysfunction as a result of autoimmunity. It is a genetic disorder inherited in autosomal recessive fashion due to a defect in the "AIRE" gene (autoimmune regulator), which is located on chromosome 21 and normally confers immune tolerance.
Autoimmune polyendocrine syndrome type 1 symptoms and signs include the following:
- Hypoparathyroidism
- Hypogonadism
- Vitiligo
- Alopecia
- Malabsorption
- Anemia
- Cataract
- Adrenal hyperplasia
The Sertoli cell-only syndrome patients normally have normal secondary male features and have normal- or small-sized testes.
Sertoli cell-only syndrome (a.k.a. Del Castillo syndrome and germ cell aplasia ) is a disorder characterized by male sterility without sexual abnormality. It describes a condition of the testes in which only Sertoli cells line the seminiferous tubules.
Imerslund–Gräsbeck syndrome, is a rare autosomal recessive, familial form of vitamin B deficiency caused by malfunction of the ""Cubam"" receptor located in the terminal ileum. This receptor is composed of two proteins, amnionless (AMN), and cubilin. A defect in either of these protein components can cause this syndrome. This is a rare disease, with a prevalence about 1 in 200,000, and is usually seen in patients of European ancestry.
Vitamin B is an important vitamin needed for bone marrow functioning, the deficit of which causes decreased marrow output and anemia. Vitamin B has two forms, one of which, along with folate, is important in DNA synthesis. Vitamin B is sensitive to acid deformation in the stomach, so a molecule called haptocorrin (R-factor), protects it in the stomach. In the small bowel, a molecule named intrinsic factor (IF), allows vitamin B to be absorbed in the ileum. IGS is caused by a mutation in the receptors located in the terminal portion of ileum. This is a very rare, and unlikely cause of vitamin B deficiency but is a cause nonetheless.
Defined as those seen in any macrocytic, megaloblastic anemia:
- Anemia: causing fatigue, conjuctival pallor, pale complexion, and in some cases, a mild icterus (yellowing of the eye).
- Glossitis ("shiny tongue"): shiny, glossy tongue.
- Cheilosis (stomatitis): Inflammation of the edges of the lips and the oral mucosa.
- Tabes dorsalis ("subacute combined degeneration of the spinal cord"): This involves the posterior section of the spinal cord and therefore involves proprioception (sense of position), touch, sense of vibration and in severe cases the lateral corticospinal tract, causing spastic paralysis of the limbs.
- Peripheral neuropathy: tingling sensation in the arms and legs.
- Pancytopenia: decreased number of blood cells of all lineages (RBCs, leucocytes, platelets), due to decreased bone marrow production.
- Methylmalonyl CoA-emia: defined as blood having an unusually high concentration of methylmalonyl CoA.
- Peripheral findings such as hypersegmented neutrophils and large RBCs on high field view of the blood smears.
- Laboratory findings indicating increased MCV (Mean Corpuscular Volume), decreased Hgb/Hct (indicating anemia), and decreased value of vitamin B in the blood.
- Proteinuria: protein found in the urine detected by analysis or by dipstick.
- Reversal of all symptoms except neurological symptoms, by IV injection of vitamin B.
- Schilling test indicating no radioactive vitamin B in the urine. (This test has dropped out of favor and should not be tried in patients with any form of renal failure).
Collagen improperly formed, enough collagen is made but it is defective.
- Bones fracture easily, sometimes even before birth
- Bone deformity, often severe
- Respiratory problems possible
- Short stature, spinal curvature and sometimes barrel-shaped rib cage
- Triangular face
- Loose joints (double-jointed)
- Poor muscle tone in arms and legs
- Discolouration of the sclera (the 'whites' of the eyes are blue)
- Early loss of hearing possible
Type III is distinguished among the other classifications as being the "progressive deforming" type, wherein a neonate presents with mild symptoms at birth and develops the aforementioned symptoms throughout life. Lifespans may be normal, albeit with severe physical handicapping.
The diagnosis of PMG is merely descriptive and is not a disease in itself, nor does it describe the underlying cause of the brain malformation.
Polymicrogyria may be just one piece of a syndrome of developmental abnormalities, because children born with it may suffer from a wide spectrum of other problems, including global developmental disabilities, mild to severe mental retardation, motor dysfunctions including speech and swallowing problems, respiratory problems, and seizures. Though it is difficult to make a predictable prognosis for children with the diagnosis of PMG, there are some generalized clinical findings according to the areas of the brain that are affected.
- Bilateral frontal polymicrogyria (BFP) – Cognitive and motor delay, spastic quadriparesis, epilepsy
- Bilateral frontoparietal polymicrogyria (BFPP) – Severe cognitive and motor delay, seizures, dysconjugate gaze, cerebellar dysfunction
- Bilateral perisylvian polymicrogyria (BPP) – Pseudobulbar signs, cognitive impairment, epilepsy, some with arthrogryposis or lower motor neuron disease
- Bilateral parasagittal parieto-occipital polymicrogyria (BPPP) – Partial seizures, some with mental retardation
- Bilateral generalized polymicrogyria (BGP) – Cognitive and motor delay of variable severity, seizures
Collagen quantity is sufficient but is not of a high enough quality
- Bones fracture easily, especially before puberty
- Short stature, spinal curvature, and barrel-shaped rib cage
- Bone deformity is mild to moderate
- Early loss of hearing
Similar to Type I, Type IV can be further subclassified into types IVA and IVB characterized by absence (IVA) or presence (IVB) of dentinogenesis imperfecta.
BGP is most severe in the perisylvian regions, but occurs in a generalised distribution. Associated factors include a reduced volume of white matter and ventriculomegaly. BGP tends to show excessively folded and fused gyri of an abnormally thin cerebral cortex, and an absence of the normal six-layered structure. The abnormally thin cortex is a key factor that distinguishes this form of polymicrogyria from the others, which are characterized by an abnormally thick cortex. Most of the patients have cognitive and motor delay, spastic hemi- or quadriparesis, and seizures in varying degrees. The seizures also vary at age of onset, type, and severity. There have been pseudobulbar signs reported with BGP, which are also seen in patients suffering from BPP. This association leads to the belief that there is overlap between patients suffering from BGP and patients suffering from grade 1 BPP.
Methylmalonic acidemia (MMA), also called methylmalonic aciduria, is an autosomal recessive metabolic disorder. It is a classical type of organic acidemia. The result of this condition is the inability to properly digest specific fats and proteins, which in turn leads to a buildup of a toxic level of methylmalonic acid in the blood.
Methylmalonic acidemia stems from several genotypes, all forms of the disorder usually diagnosed in the early neonatal period, presenting progressive encephalopathy, and secondary hyperammonemia. The disorder can result in death if undiagnosed or left untreated. It is estimated that this disorder has a frequency of 1 in 48,000 births, though the high mortality rate in diagnosed cases make exact determination difficult. Methylmalonic acidemias are found with an equal frequency across ethnic boundaries.