Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In undiagnosed and untreated children, the accumulation of precursor metabolites due to the deficient activity of galactose 1-phosphate uridylyltransferase (GALT) can lead to feeding problems, failure to thrive, liver damage, bleeding, and infections. The first presenting symptom in an infant is often prolonged jaundice. Without intervention in the form of galactose restriction, infants can develop hyperammonemia and sepsis, possibly leading to shock. The accumulation of galactitol and subsequent osmotic swelling can lead to cataracts which are similar to those seen in galactokinase deficiency. Long-term consequences of continued galactose intake can include developmental delay, developmental verbal dyspraxia, and motor abnormalities. Galactosemic females frequently suffer from ovarian failure, regardless of treatment in the form of galactose restriction.
A broad classification for genetic disorders that result from an inability of the body to produce or utilize one enzyme that is required to oxidize fatty acids. The enzyme can be missing or improperly constructed, resulting in it not working. This leaves the body unable to produce energy within the liver and muscles from fatty acid sources.
The body's primary source of energy is glucose; however, when all the glucose in the body has been expended, a normal body digests fats. Individuals with a fatty-acid metabolism disorder are unable to metabolize this fat source for energy, halting bodily processes. Most individuals with a fatty-acid metabolism disorder are able to live a normal active life with simple adjustments to diet and medications.
If left undiagnosed many complications can arise. When in need of glucose the body of a person with a fatty-acid metabolism disorder will still send fats to the liver. The fats are broken down to fatty acids. The fatty acids are then transported to the target cells but are unable to be broken down, resulting in a build-up of fatty acids in the liver and other internal organs.
Fatty-acid metabolism disorders are sometimes classified with the lipid metabolism disorders, but in other contexts they are considered a distinct category.
The term fatty acid oxidation disorder (FAOD) is sometimes used, especially when there is an emphasis on the oxidation of the fatty acid.
In addition to the fetal complications, they can also cause complications for the mother during pregnancy.
Examples include:
- trifunctional protein deficiency
- MCADD, LCHADD, and VLCADD
Typically, initial signs and symptoms of this disorder occur during infancy and include low blood sugar (hypoglycemia), lack of energy (lethargy), and muscle weakness. There is also a high risk of complications such as liver abnormalities and life-threatening heart problems. Symptoms that begin later in childhood, adolescence, or adulthood tend to be milder and usually do not involve heart problems. Episodes of very long-chain acyl-coenzyme A dehydrogenase deficiency can be triggered by periods of fasting, illness, and exercise.
It is common for babies and children with the early and childhood types of VLCADD to have episodes of illness called metabolic crises. Some of the first symptoms of a metabolic crisis are: extreme sleepiness, behavior changes, irritable mood, poor appetite.
Some of these other symptoms of VLCADD in infants may also follow: fever, nausea, diarrhea, vomiting, hypoglycemia.
This defect leads to a multi-systemic disorder of the connective tissue, muscles, central nervous system (CNS), and cardiovascular system. Homocystinuria represents a group of hereditary metabolic disorders characterized by an accumulation of the amino acid homocysteine in the serum and an increased excretion of homocysteine in the urine. Infants appear to be normal and early symptoms, if any are present, are vague.
Signs and symptoms of homocystinuria that may be seen include the following:
Galactose-1-phosphate uridylyltransferase deficiency, also called galactosemia type 1, classic galactosemia or GALT deficiency, is the most common type of galactosemia, an inborn error of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridylyltransferase. It is an autosomal recessive metabolic disorder that can cause liver disease and death if untreated. Treatment of galactosemia is most successful if initiated early and includes dietary restriction of lactose intake. Because early intervention is key, galactosemia is included in newborn screening programs in many areas. On initial screening, which often involves measuring the concentration of galactose in blood, classic galactosemia may be indistinguishable from other inborn errors of galactose metabolism, including galactokinase deficiency and galactose epimerase deficiency. Further analysis of metabolites and enzyme activities are needed to identify the specific metabolic error.
Affected individuals may have difficulty moving and may experience spasms, jerking, rigidity or decreased muscle tone and muscle weakness (which may be the result of secondary carnitine deficiency). Glutaric aciduria type 1, in many cases, can be defined as a cerebral palsy of genetic origins.
Signs and symptoms can include:
- hypoglycemia
- lethergy
- hepatomegaly
- muscle pain
- cardiomyopathy
Babies with glutaric acidemia type 1 often are born with unusually large heads (macrocephaly). Macrocephaly is amongst the earliest signs of GA1. It is thus important to investigate all cases of macrocephaly of unknown origins for GCDH deficiency, given the importance of the early diagnosis of GA1.
Macrocephaly is a "pivotal clinical sign" of many neurological diseases. Physicians and parents should be aware of the benefits of investigating for an underlying neurological disorder, particularly a neurometabolic one, in children with head circumferences in the highest percentiles.
Glycerol Kinase Deficiency causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. This excess of glycerol in bodily fluids can lead to many more potentially dangerous symptoms. Common symptoms include vomiting and lethargy. These tend to be the only symptoms, if any, present in adult GKD which has been found to present with fewer symptoms than infant or juvenile GKD. When GKD is accompanied by Duchenne Muscular Dystrophy and Adrenal Hypoplasia Congenita, also caused by mutations on the Xp21 chromosome, the symptoms can become much more severe. Symptoms visible at or shortly after birth include:
- cryptorchidism
- strabismus
- seizures
Some other symptoms that become more noticeable with time would be:
- metabolic acidosis
- hypoglycemia
- adrenal cortex insufficiency
- learning disabilities
- osteoporosis
- myopathy
Many of the physically visible symptoms, such as cryptorchidism, strabismus, learning disabilities, and myopathy, tend to have an added psychological effect on the subject due to the fact that they can set him or her apart from those without GKD. Cryptorchidism, the failure of one or both of the testes to descend to the scrotum, has been known to lead to sexual identity confusion amongst young boys because it is such a major physiological anomaly. Strabismus is the misalignment of one’s eyes. Typically, one is focused but the other is “lazy” and is directed inward or out ward (up and down is less common but does occur).
PDCD is generally presented in one of two forms. The metabolic form appears as lactic acidosis. The neurological form of PDCD contributes to hypotonia, poor feeding, lethargy and structural abnormalities in the brain. Patients may develop seizures and/or neuropathological spasms. These presentations of the disease usually progress to mental retardation, microcephaly, blindness and spasticity.
Females with residual pyruvate dehydrogenase activity will have no uncontrollable systemic lactic acidosis and few, if any, neurological symptoms. Conversely, females with little to no enzyme activity will have major structural brain abnormalities and atrophy. Males with mutations that abolish, or almost abolish, enzyme activity presumably die in utero because brain cells are not able to generate enough ATP to be functionally viable. It is expected that most cases will be of mild severity and have a clinical presentation involving lactic acidosis.
Prenatal onset may present with non-specific signs such as low Apgar scores and small for gestational age. Metabolic disturbances may also be considered with poor feeding and lethargy out of proportion to a mild viral illness, and especially after bacterial infection has been ruled out. PDH activity may be enhanced by exercise, phenylbutyrate and dichloroacetate.
The clinical presentation of congenital PDH deficiency is typically characterized by heterogenous neurological features that usually appear within the first year of life. In addition, patients usually show severe hyperventillation due to profound metabolic acidosis mostly related to lactic acidosis. Metabolic acidosis in these patients is usually refractory to correction with bicarbonate.
Classic phosphofructokinase deficiency is the most common type of this disorder. This type presents with exercise-induced muscle cramps and weakness (sometimes rhabdomyolysis), myoglobinuria, as well as with haemolytic anaemia causing dark urine a few hours later.
Hyperuricemia is common, due to the kidneys' inability to process uric acid following damage resulting from processing myoglobin. Nausea and vomiting following strenuous exercise is another common indicator of classic PFK deficiency. Many patients will also display high levels of bilirubin, which can lead to a jaundiced appearance. Symptoms for this type of PFK deficiency usually appear in early childhood.
Late-onset PFK deficiency, as the name suggests, is a form of the disease that presents later in life. Common symptoms associated with late-onset phosphofructokinase deficiency are myopathy, weakness and fatigue. Many of the more severe symptoms found in the classic type of this disease are absent in the late-onset form.
Infants with this disease seem healthy at birth but quickly deteriorate, often with severe brain damage, which may be permanent. Death often occurs within the first five months in severe cases of the disease, when left untreated.
The symptoms of MSUD may also present later depending on the severity of the disease. Untreated in older individuals, and during times of metabolic crisis, symptoms of the condition include uncharacteristically inappropriate, extreme or erratic behaviour and moods, hallucinations, anorexia, weight loss, anemia, diarrhea, vomiting, dehydration, lethargy, oscillating hypertonia and hypotonia, ataxia, seizures, hypoglycaemia, ketoacidosis, opisthotonus, pancreatitis, rapid neurological decline, and coma. Without prompt treatment, they will likely die from cerebral edema. Additionally, maple syrup urine disease patients often experience an abnormal course of disease in simple infections that become increasingly severe and can have permanent damage. In more rare cases, concomitant osteoporosis may also appear in these patients.
Classical homocystinuria, also known as cystathionine beta synthase deficiency or CBS deficiency, is an inherited disorder of the metabolism of the amino acid methionine, often involving cystathionine beta synthase. It is an inherited autosomal recessive trait, which means a child needs to inherit a copy of the defective gene from both parents to be affected.
Type A, which has been identified mostly in people from North America, has moderately severe symptoms that begin in infancy. Characteristic features include developmental delay and a buildup of lactic acid in the blood (lactic acidosis). Increased acidity in the blood can lead to vomiting, abdominal pain, extreme tiredness (fatigue), muscle weakness, and difficulty breathing. In some cases, episodes of lactic acidosis are triggered by an illness or periods without food. Children with pyruvate carboxylase deficiency type A typically survive only into early childhood.
Pyruvate carboxylase deficiency type B has life-threatening signs and symptoms that become apparent shortly after birth. This form of the condition has been reported mostly in Europe, particularly France. Affected infants have severe lactic acidosis, a buildup of ammonia in the blood (hyperammonemia), and liver failure. They experience neurological problems including weak muscle tone (hypotonia), abnormal movements, seizures, and coma. Infants with this form of the condition usually survive for less than 3 months after birth.
This disorder usually appears within the first year of life. The signs and symptoms of HMG-CoA lyase deficiency include vomiting, dehydration, lethargy, convulsions, and coma. When episodes occur in an infant or child, blood sugar becomes extremely low (hypoglycemia), and harmful compounds can build up and cause the blood to become too acidic (metabolic acidosis). These episodes are often triggered by an infection, fasting, strenuous exercise, or sometimes other types of stress.
Carbamoyl phosphate synthetase I deficiency often becomes evident in the first few days of life. An infant with this condition may be lacking in energy (lethargic) or unwilling to eat, and have a poorly controlled breathing rate or body temperature. Some babies with this disorder may experience seizures or unusual body movements, or go into a coma. Complications of carbamoyl phosphate synthetase I deficiency may include developmental delay and mental retardation.
In some affected individuals, signs and symptoms of carbamoyl phosphate synthetase I deficiency may be less severe, and may not appear until later in life.
3-Hydroxy-3-methylglutaryl-CoA lyase deficiency also referred to as HMG-CoA lyase deficiency or Hydroxymethylglutaric aciduria, is an uncommon inherited disorder in which the body cannot properly process the amino acid leucine. Additionally, the disorder prevents the body from making ketones, which are used for energy during fasting.
The presentation of patient with SPCD can be incredibly varied, from asymptomatic to lethal cardiac manifestations. Early cases were reported with liver dysfunction, muscular findings (weakness and underdevelopment), hypoketotic hypoglycemia, cardiomegaly, cardiomyopathy and marked carnitine deficiency in plasma and tissues, combined with increased excretion in urine. Patients who present clinically with SPCD fall into two categories, a metabolic presentation with hypoglycemia and a cardiac presentation characterized by cardiomyopathy. Muscle weakness can be found with either presentation.
In countries with expanded newborn screening, SPCD can be identified shortly after birth. Affected infants show low levels of free carnitine and all other acylcarnitine species by tandem mass spectrometry. Not all infants with low free carnitine are affected with SPCD. Some may have carnitine deficiency secondary to another metabolic condition or due to maternal carnitine deficiency. Proper follow-up of newborn screening results for low free carnitine includes studies of the mother to determine whether her carnitine deficiency is due to SPCD or secondary to a metabolic disease or diet. Maternal cases of SPCD have been identified at a higher than expected rate, often in women who are asymptomatic. Some mothers have also been identified through newborn screening with cardiomyopathy that had not been previously diagnosed. The identification and treatment of these asymptomatic individuals is still developing, as it is not clear whether they require the same levels of intervention as patients identified with SPCD early in life based on clinical presentation.
The signs and symptoms of this disorder typically appear in early childhood. Almost all affected children have delayed development. Additional signs and symptoms can include weak muscle tone (hypotonia), seizures, diarrhea, vomiting, and low blood sugar (hypoglycemia). A heart condition called cardiomyopathy, which weakens and enlarges the heart muscle, is another common feature of malonyl-CoA decarboxylase deficiency.
Some common symptoms in Malonyl-CoA decarboxylase deficiency, such as cardiomyopathy and metabolic acidosis, are triggered by the high concentrations of Malonyl-CoA in the cytoplasm. High level of Malonyl-CoA will inhibits β-oxidation of fatty acids through deactivating the carrier of fatty acyl group, CPT1, and thus, blocking fatty acids from going into the mitochondrial matrix for oxidation.
A research conducted in Netherlands has suggested that carnitine supplements and a low fat diet may help to reduce the level of malonic acid in our body.
Glycogen storage disease type I (GSD I) or von Gierke disease, is the most common of the glycogen storage diseases. This genetic disease results from deficiency of the enzyme glucose-6-phosphatase, and has an incidence in the American population of approximately 1 in 50,000 to 100,000 births.
The deficiency impairs the ability of the liver to produce free glucose from glycogen and from gluconeogenesis. Since these are the two principal metabolic mechanisms by which the liver supplies glucose to the rest of the body during periods of fasting, it causes severe hypoglycemia and results in increased glycogen storage in liver and kidneys. Both organs function normally in childhood, but are susceptible to a variety of problems in adult years. Other metabolic derangements include lactic acidosis and hyperlipidemia. Frequent or continuous feedings of cornstarch or other carbohydrates are the principal treatment. Other therapeutic measures may be needed for associated problems.
The disease was named after German doctor Edgar von Gierke.
Pyruvate dehydrogenase deficiency (also known as pyruvate dehydrogenase complex deficiency or PDCD) is one of the most common neurodegenerative disorders associated with abnormal mitochondrial metabolism. PDCD is an X-linked disease that shows heterogeneous characteristics in both clinical presentation and biochemical abnormality. The pyruvate dehydrogenase complex (PDC) is a multi-enzyme complex that plays a vital role as a key regulatory step in the central pathways of energy metabolism in the mitochondria.