Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Congenital mesoblastic nephroma typically (76% of cases) presents as an abdominal mass which is detected prenatally (16% of cases) by ultrasound or by clinical inspection (84% of cases) either at birth or by 3.8 years of age (median age ~1 month). The neoplasm shows a slight male preference. Concurrent findings include hypertension (19% of cases), polyhydramnios (i.e. excess of amniotic fluid in the amniotic sac) (15%), hematuria (11%), hypercalcemia (4%), and elevated serum levels of the kidney-secreted, hypertension-inducing enzyme, renin (1%). Congenital anomalies have been reported in 11 patients: 6 with genitourinary anomalies, 2 with gastrointestinal anomalies, 1 with hydrocephalus, and 1 with the Beckwith–Wiedemann syndrome. The vast majority of patients present with localized (i.e. non-metastatic) disease. Most patients' disease is classified at presentation as stage I or II (i.e. localized), few patients present with stage III (i.e. locally advanced/infiltrating), and virtually no patients present with stage IV (metastases present or V (i.e. tumors in both kidneys) disease (see staging of renal cancer).
Diagnosis of mesoblastic nephroma and its particular type (i.e. classic, mixed, or cellular) is made by histological examination of tissues obtained at surgery. Besides its histological appearance, various features of this disease aid in making a differential diagnosis that distinguish it from the following childhood neoplasms:
- Wilm's tumor is the most common childhood kidney neoplasm, representing some 85% of cases. Unlike mesoblastic nephroma, 3 years of age. Bilateral kidney tumors, concurrent birth defects, and/or metastatic disease at presentation favor a diagnosis of Wilm's tumor.
- congenital infantile sarcoma is a rare aggressive sarcoma typically presenting in the lower extremities, head, or neck of infants during their first year of life. The histology, association with the "ETV6-NRTK3" fusion gene along with certain chromosome trisomies, and the distribution of markers for cell type (i.e. cyclin D1 and Beta-catenin) within this tumor are the same as those found in cellular mesoblastic nephroma. Mesoblastic nephroma and congenital infantile sarcoma appear to be the same diseases with mesoblastic lymphoma originating in the kidney and congenital infantile sarcoma originating in non-renal tissues.
- Rhabdoid tumor, which accounts for 5-510% of childhood kidney neoplasms, occurs predominantly in children from 1 to 2 years of age. Unlike mesoblastic nephroma, rhabdoid tumors may present with tumors in other tissues including in ~13% of cases, the brain. Rhabdoid tumors have a distinctive histology and abnormalities (i.e. loss of heterozygosity, single nucleotide polymorphism, and deletions) in chromosome 22.
- Clear cell sarcoma of the kidney, which is responsible for 5-10% of childhood pediatric tumors, occurs predominantly in children from 2 to 3 years of age. Unlike meoblastic nephorma, clear cell sarcoma of the kidney presents with metastasis, particularly to bone, in 5-6% of cases; it histology is diverse and has been mistaken for mesoblastic nephroma. One chromosomal translocations t,(10;17)(q22;p13), has been repeatedly reported to be associated with clear cell sarcoma of the kidney.
- Infantile myofibromatosis is a fibrous tumor of infancy and childhood most commonly presenting during the first 2 years of life as a single subcutaneous nodule of the head and neck region or less commonly as multiple lesions of skin, muscle, bone, and in ~33% of these latter cases, visceral organs. All of these lesions have an excellent prognosis and can regress spontaneously except for those in which there is visceral involvement where the prognosis is poor. While infantile myofibromatosis and classic mesoblastic nephroma have been suggested to be the same diseases because of their very similar histology, studies on the distribution of cell-type markers (i.e. cyclin D1 and Beta-catenin) indicate that they have different cellular origins.
Individuals presenting with fibrosarcoma are usually adults aged thirty to fifty five years, often presenting with pain. In adults, males have a higher incidence for fibrosarcoma than females.
The tumor may present different degrees of differentiation: low grade (differentiated), intermediate malignancy and high malignancy (anaplastic). Depending on this differentiation, tumour cells may resemble mature fibroblasts (spindle-shaped), secreting collagen, with rare mitoses. These cells are arranged in short fascicles which split and merge, giving the appearance of "fish bone" known as a herringbone pattern. Poorly differentiated tumors consist in more atypical cells, pleomorphic, giant cells, multinucleated, numerous atypical mitoses and reduced collagen production. Presence of immature blood vessels (sarcomatous vessels lacking endothelial cells) favors the bloodstream metastasizing. There are many tumors in the differential diagnosis, including spindle cell melanoma, spindle cell squamous cell carcinoma, synovial sarcoma, leiomyosarcoma, malignant peripheral nerve sheath tumor and biphenotypic sinonasal sarcoma.
Cystic nephromas are often asymptomatic. They are typically discovered on medical imaging incidentally (i.e. an incidentaloma).
A cystic nephroma, also known as multilocular cystic nephroma, mixed epithelial stromal tumour (MEST) and renal epithelial stromal tumour (REST), is a type of rare benign kidney tumour.
Mammary analogue secretory carcinoma (MASC) (also termed MASC; the "SG" subscript indicates salivary gland)) is a salivary gland neoplasm that shares a genetic mutation with certain types of breast cancer. MASC was first described by Skálová et al. in 2010. The authors of this report found a chromosome translocation in certain salivary gland tumors that was identical to the (12;15)(p13;q25) fusion gene mutation found previously in secretory carcinoma, a subtype of invasive ductal carcinoma of the breast.
Infantile myofibromatosis (also known as "Congenital generalized fibromatosis," and "Congenital multicentric fibromatosis") is the most common fibrous tumor of infancy, in which eighty percent of patients have solitary lesions with half of these occurring on the head and neck, and 60% are present at or soon after birth. Less commonly, infantile myofibromatosis presents as multiple lesions of skin, muscle, and bone with about 1/3 of these cases also having lesions in their visceral organs. All of these cases have an excellent prognosis with their tumors sometimes regressing spontaneously except for those cases in which there is visceral involvement where the prognosis is poor. Infantile myofibromatosis and the classic form of mesoblastic nephroma have been suggested to be the same disease because of their very similar histology. However, studies on the distribution of cell-type markers (i.e. cyclin D1 and Beta-catenin) indicate that the two neoplasms likely have different cellular origins.
Historically, medical practitioners expected a person to present with three findings. This classic triad is 1: haematuria, which is when there is blood present in the urine, 2: flank pain, which is pain on the side of the body between the hip and ribs, and 3: an abdominal mass, similar to bloating but larger. It is now known that this classic triad of symptoms only occurs in 10–15% of cases, and is usually indicative that the renal cell carcinoma (RCC) is in an advanced stage. Today, RCC is often asymptomatic (meaning few to no symptoms) and is generally detected incidentally when a person is being examined for other ailments.
Other signs and symptom may include haematuria; loin pain; abdominal mass; malaise, which is a general feeling of unwellness; weight loss and/or loss of appetite; anaemia resulting from depression of erythropoietin; erythrocytosis (increased production of red blood cells) due to increased erythropoietin secretion; varicocele, which is seen in males as an enlargement of the pampiniform plexus of veins draining the testis (more often the left testis) hypertension (high blood pressure) resulting from secretion of renin by the tumour; hypercalcemia, which is elevation of calcium levels in the blood; sleep disturbance or night sweats; recurrent fevers; and chronic fatigue.
Renal cell carcinoma (RCC) is a kidney cancer that originates in the lining of the proximal convoluted tubule, a part of the very small tubes in the kidney that transport primary urine. RCC is the most common type of kidney cancer in adults, responsible for approximately 90–95% of cases.
Initial treatment is most commonly either partial or complete removal of the affected kidney(s). Where the cancer has not metastasised (spread to other organs) or burrowed deeper into the tissues of the kidney, the 5-year survival rate is 65–90%, but this is lowered considerably when the cancer has spread.
The body is remarkably good at hiding the symptoms and as a result people with RCC often have advanced disease by the time it is discovered. The initial symptoms of RCC often include blood in the urine (occurring in 40% of affected persons at the time they first seek medical attention), flank pain (40%), a mass in the abdomen or flank (25%), weight loss (33%), fever (20%), high blood pressure (20%), night sweats and generally feeling unwell. When RCC metastasises, it most commonly spreads to the lymph nodes, lungs, liver, adrenal glands, brain or bones. Immunotherapy and targeted therapy have improved the outlook for metastatic RCC.
RCC is also associated with a number of paraneoplastic syndromes (PNS) which are conditions caused by either the hormones produced by the tumour or by the body's attack on the tumour and are present in about 20% of those with RCC. These syndromes most commonly affect tissues which have not been invaded by the cancer. The most common PNSs seen in people with RCC are: high blood calcium levels, polycythaemia (the opposite of anemia, due to an overproduction of the hormone erythropoietin), thrombocytosis (too many platelets in the blood, leading to an increased tendency for blood clotting and bleeds) and secondary amyloidosis.
Mammary analogue secretory carcinoma occurs somewhat more commonly in men (male to female ratio of <1.5:1.0). Patients with this disease have a mean age of 46 years although ~12% of cases occur in pediatric patients. Individuals typically present with symptomless tumors in the [[parotid|parotid salivary gland]] (68%), [[Oral mucosa#classification|buccal mucosa salivary glands]] (9%), [[Submandibular gland|submandibular salivary gland]] (8%) or in the small salivary glands of the lower lip (5%), upper lip (4%), and [[hard palate]] (4%). [[Histologically]], these tumors are described as have a morphology similar to secretory breast carcinoma; they typically having one or more of the following histological patterns: microcystic, papillary-cystic, follicular, and/or solid lobular. Other histological features of these tissues include: the presence of eosinophilic secretions as detected by staining strongly for [[eosin Y]]; positive staining with [[periodic acid-Schiff stain]] (often after [[diastase]]); the presence of vesicular oval nuclei with a single small but prominent [[nucleolus]]; and the absence of basophilic [[Haematoxylin]] or [[zymogen]] granules (i.e. vesicles that store enzymes near the cell's plasma membrane).
The cited histology features are insufficient to distinguish MASC from other [[Salivary gland neoplasm]]s such as [[acinic cell carcinoma]], low-grade cribriform cystadenocarcinoma, and adenocarcinoma not otherwise specified. MASC can be distinguished from these and other histologically similar tumors by either tissue identification of a) the "ETV6-NTRK3" fusion gene using [[Fluorescence in situ hybridization]] or [[reverse transcription polymerase chain reaction]] gene detection methods or b) a specific pattern of marker proteins as registered using specific antibody-based detection methods, i.e. MASC tissue should have detectable [[S100 protein|S100]] (a family of calcium binding proteins), [[Mammaglobin]] (a breast cancer marker, Keratin 7 (an intermediate filament found in epithelial cells), GATA3 (a transcription factor and breast cancer biomarker), SOX10 (a transcription factor important in neural crest origin cells and development of the peripheral nervous system), and STAT5A (a transcription factor) but lack antibody-detectable TP63 (a transcription factor in the same family as p53) and Anoctamin-1 (a voltage sensitive calcium activated chloride channel).
In addition to renal cell carcinoma and renal pelvis carcinoma, other, less common types of kidney cancer include:
- Squamous cell carcinoma
- Juxtaglomerular cell tumor (reninoma)
- Angiomyolipoma
- Bellini duct carcinoma
- Clear-cell sarcoma of the kidney
- Mesoblastic nephroma
- Wilms' tumor, usually is reported in children under the age of 5.
- Mixed epithelial stromal tumor
Rarely, some other types of cancer and potentially cancerous tumors that more usually originate elsewhere can originate in the kidneys. These include:
- Clear cell adenocarcinoma
- Transitional cell carcinoma
- Inverted papilloma
- Renal lymphoma
- Teratoma
- Carcinosarcoma
- Carcinoid tumor of the renal pelvis
Cancer in the kidney may also be secondary, the result of metastasis from a primary cancer elsewhere in the body.
Most children (>80%) with BWS do not develop cancer; however, children with BWS are much more likely (~600 times more) than other children to develop certain childhood cancers, particularly Wilms' tumor (nephroblastoma), pancreatoblastoma and hepatoblastoma. Individuals with BWS appear to only be at increased risk for cancer during childhood (especially before age four) and do not have an increased risk of developing cancer in adulthood. If 100 children with BWS were followed from birth until age ten, about 10 cases of cancer would be expected in the group before age four, and about 1 case of cancer in the group would be expected between age four and ten.
In addition to Wilms tumor and hepatoblastoma, children with BWS have been shown in individual case reports to develop ganglioneuroma, adrenocortical carcinoma, acute lymphoid leukemia, liver sarcoma, thyroid carcinoma, melanoma, rhabdomyosarcoma, and mesoblastic nephroma.
Wilms tumor, hepatoblastoma, and mesoblastic nephroma can usually be cured if diagnosed early. Early diagnosis allows physicians to treat the cancer when it is at an early stage. In addition, there is less toxic treatment. Given the importance of early diagnosis, all children with BWS should receive cancer screening.
An abdominal ultrasound every 3 months until at least eight years of age is recommended and a blood test to measure alpha-fetoprotein (AFP) every 6 weeks until at least four years of age. Families and physicians should determine screening schedules for specific patients, especially the age at which to discontinue screening, based upon their own evaluation of the risk-benefit ratio.
Most children with BWS do not have all of these five features. In addition, some children with BWS have other findings including: nevus flammeus, prominent occiput, midface hypoplasia, hemihypertrophy, genitourinary anomalies (enlarged kidneys), cardiac anomalies, musculoskeletal abnormalities, and hearing loss. Also, some premature newborns with BWS do not have macroglossia until closer to their anticipated delivery date.
Given the variation among individuals with BWS and the lack of a simple diagnostic test, identifying BWS can be difficult. In an attempt to standardize the classification of BWS, DeBaun et al. have defined a child as having BWS if the child has been diagnosed by a physician as having BWS and if the child has at least two of the five common features associated with BWS (macroglossia, macrosomia, midline abdominal wall defects, ear creases/ear pits, neonatal hypoglycemia). Another definition presented by Elliot et al. includes the presence of either three major features (anterior abdominal wall defect, macroglossia, or prepostnatal overgrowth) or two major plus three minor findings (ear pits, nevus flammeus, neonatal hypoglycemia, nephromegaly, or hemihyperplasia).
While most children with BWS do not develop cancer, children with BWS do have a significantly increased risk of cancer. Children with BWS are most at risk during early childhood and should receive cancer screening during this time.
In general, children with BWS do very well and grow up to become adults of normal size and intelligence, usually without the syndromic features of their childhood.
The most common signs and symptoms of kidney cancer are a mass in the abdomen and/or blood in the urine (or hematuria). Other symptoms may include tiredness, loss of appetite, weight loss, a high temperature and heavy sweating, and persistent pain in the abdomen. However, many of these symptoms can be caused by other conditions, and there may also be no signs or symptoms in a person with kidney cancer, especially in the early stages of the disease.
The differential diagnosis includes;
- Symbrachydactyly
- Chorionic villus sampling
- Congenital amputations
- Hypoplasias of hand, digit, thumb
- Adams-Oliver syndrome
- ADAM complex
ADAM Complex; CRS is sometimes mislabeled as ADAM complex. ADAM is an abbreviation for Amniotic Deformity, Adhesions Mutilations. CRS is the malformation due to a constriction ring around mostly a limb. ADAM-complex is the association of limb defects (caused by constriction rings) and certain craniofacial clefts
“Adams-Oliver syndrome is often mislabeled as CRS and consists of cutis aplasia of the scalp in which a longitudinal defect can vary in size and can often be associated with full-thickness skullcap loss. The distal digital or toe hypoplasia-aplasia is often confused with CRS. Constriction rings with or without edema are not present. The digital or toe hypoplasia-aplasia usually contains diminutive nails or nail folds”.
The diagnosis of constriction ring syndrome can be confirmed with an ultrasonography. The clinical manifestations can be extremely variable. It could be a single or multiple manifestation. This can be confirmed at the end of the first trimester or at the beginning of the second trimester. But not every patient will be diagnosed at that moment, most will get this diagnosis at birth.