Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
SFMS affects the skeletal and nervous system. This syndrome's external signs would be an unusual facial appearance with their heads being slightly smaller and unusually shaped, a narrow face which is also called dolichocephaly, a large mouth with a drooping lower lip that are held open, protruding upper jaw, widely spaced upper front teeth, an underdeveloped chin, cleft palate and exotropied-slanted eyes with drooping eyelids.
Males who have SFMS have short stature and a thin body build. Also skin is lightly pigmented with multiple freckles. They may have scoliosis and chest abnormalities.
Affected boys have reduced muscle tone as infants and young children. X-rays sometimes show that their bones are underdeveloped and show characteristics of younger bones of children. Boys usually under the age of 10 have reduced muscle tone but later, patients with SFMS over the age of 10 have increased muscle tone and reflexes that cause spasticity. Their hands are short with unusual palm creases with short, shaped fingers and foot abnormalities are shortened and have fused toes and usually mild.
They have an absent of a spleen and the genitals may also show undescended testes ranging from mild to severe that leads to female gender assignment.
People who have SFMS have severe mental retardation. They are sometimes restless, behavior problems, seizures and severe delay in language development. They are self-absorbed with reduced ability to socialize with others around them. They also have psychomotor retardation which is the slowing-down of thoughts and a reduction of physical movements. They have cortical atrophy or degeneration of the brain's outer layer. Cortical atrophy is usually founded in older affected people.
Symptoms of M2DS include infantile hypotonia and failure to thrive, delayed psychomotor development, impaired speech, abnormal or absent gait, epilepsy, spasticity, gastrointestinal motility problems, recurrent infections, and genitourinary abnormalities. Many of those affected by M2DS also fit diagnostic criteria for autism. M2DS can be associated with syndromic facies, namely an abnormally flat back of the head, underdevelopment of the midface, ear anomalies, deep-set eyes, prominent chin, pointed nose, and a flat nasal bridge.
The combination of muscular hypotonia and fixed dilated pupils in infancy is suspicious of Gillespie syndrome. Early onset partial aniridia, cerebellar ataxia, and mental retardation are hallmark of syndrome. The iris abnormality is specific and seems pathognomonic of Gillespie syndrome. The aniridia consisting of a superior coloboma and inferior iris hypoplasia, foveomacular dysplasia.
Atypical Gillespie syndrome associated with bilateral ptosis, exotropia, correctopia, iris hypoplasia, anterior capsular lens opacities, foveal hypoplasia, retinal vascular tortuosity, and retinal hypopigmentation.
Neurological signs ar nystagmus, mild craniofacial asymmetry, axial hypotonia, developmental delay, and mild mental retardation. Mariën P did not support the prevailing view of a global mental retardation as a cardinal feature of Gillespie syndrome but primarily reflect cerebellar induced neurobehavioral dysfunctions following disruption of the cerebrocerebellar anatomical circuitry that closely resembles the "cerebellar cognitive and affective syndrome" (CeCAS).
Congenital pulmonary stenosis and helix dysplasia can be associated.
Not all of the DOOR symptoms are consistently present. They can vary in severity, and additional features can be noted in individuals affected by DOOR syndrome.
Some of these additional features are:
- Polyhydramnios (increased amniotic fluid during pregnancy) and increased nuchal fold during pregnancy
- Specific facial features such as a large nose
- Severe and sometimes refractory seizures, abnormalities on the magnetic resonance imaging of the brain
- Increased 2-oxoglutaric acid in the blood and urine - this compound is made or used by several enzymes
- Finger-like thumbs
- Visual impairment
- Peripheral neuropathy (nerves conducting sensation from extremities to the brain) and insensivity to pain
Intellectual impairment is present in all reported cases, but the severity can vary widely. The prognosis in terms of survival also varies greatly from early childhood till adulthood.
At birth, there is no sign that a child will develop symptoms of aspartylglucosaminuria. Typically, signs and symptoms become apparent between two and four years of age and become progressively worse as the individual ages. The following signs and symptoms may appear:
- Individuals are more prone to respiratory infections
- Development of scoliosis
- Seizures or difficulty with movement
- Skin and joints may become loose
- Facial features change progressively; this may include:
- Progression of developmental and mental disabilities, including:
- An intellectual peak occurs in the mid-teens and allows a plateau for the disease. Once an individual hits the age of 25-30 the decrease begins again, including:
(Children are physically uncoordinated, but remain able to play sports and do everyday activities until they reach adulthood.)
- During the first year of life inguinal and umbilical hernias are common.
- Less severe symptoms include:
- People with aspartylglucosaminuria may have lower than average height, because they tend to go through puberty earlier.
- Epilepsy may develop in adulthood.
- Finnish studies have shown that life expectancy is shorter than average.
Alopecia contractures dwarfism mental retardation syndrome or (ACD mental retardation syndrome) is a developmental disorder which causes mainly baldness and dwarfism in combination with intellectual disability; skeletal anomalies, caries and nearsightedness are also typical.
The ACD mental retardation syndrome was first described in 1980 by Albert Schinzel and only few cases have since been identified in the world. At the time Dr. Schinzel made no conclusion of the hereditary pattern of this syndrome but similarities between cases reported by year 2000 seem to suggest autosomal or x-linked recessive inheritance or possibly a dominant mutation caused by mosaicism as causes of this syndrome.
Common signs of Say–Meyer syndrome are trigonocephaly as well as head and neck symptoms. The head and neck symptoms come in the form of craniosynostosis affecting the metopic suture (the dense connective tissue structure that divides the two halves of the skull in children which usually fuse together by the age of six). Symptoms of Say–Meyer syndrome other than developmental delay and short stature include
- Intellectual disability.
- Low-set ears/posteriorly rotated ears
- Intellectual deficit as well as learning disability
- Intrauterine growth retardation (poor growth of a baby while it is in the mother's womb)
- Posterior fontanel
- Premature synostosis of the lambdoid suture (the fusion of the bones to the joint is premature)
- Narrow forehead
- Trigonocephaly (a frontal bone anomaly that is characterized by a premature fusion of the bones which gives the forehead a triangular shape)
- Hypotelorism or hypertelorism (reduced or increased width between the eyes)
- Craniosynostosis (when one or more seam-like junctions between two bones fuses by turning into bone. This changes the growth pattern of the skull)
- Low birth weight and height
The affected patients sometimes show a highly arched palate, clinodactyly (a defect in which toes or fingers are positioned abnormally) and ventricular septal defect (a heart defect that allows blood to pass directly from left to the right ventricle which is caused by an opening in the septum). Overall, Say–Meyer syndrome impairs growth, motor function, and mental state.
Psychopathology and related behavioral abnormalities are typically seen in LFS, and they may be considered in the diagnosis of the disorder. The most common of these in LFS is an autism-like spectrum disorder, and LFS is considered as one of a number of genetic disorders associated with autism. Additional alterations of psychopathology with behavioral manifestations that have been observed in LFS include: psychotic behavior, schizophrenia, hyperactivity and attention-deficit hyperactivity disorder, aggression, oppositional defiant disorder, obsessive compulsive disorder, extreme shyness, learning disability, cognitive impairment, short-term memory deficit, low frustration tolerance, social dysfunction, lack of impulse control, eating disorder and associated malnutrition, attributed to psychogenic loss of appetite; and pyromania.
While psychiatric conditions like these are to be expected with LFS, there have also been cases of the disorder with some preservation of mental and behavioral abilities, such as problem solving, reasoning and normal intelligence.
The psychopathology of LFS usually exhibits schizophrenia. When schizophrenia is diagnosed in an individual known to be affected by intellectual disability, LFS may be considered in the differential diagnosis of schizophrenia, with confirmation of cause through appropriate psychiatric and genetic evaluation methods.
LFS is clinically distinguished from other X-linked forms of intellectual disability by the accompanying presence of marfanoid habitus. Marfanoid habitus describes a group of physical features common to Marfan syndrome. Including Marfan syndrome and LFS, marfanoid features of this type have also been observed with several other disorders, one of which is multiple endocrine neoplasia type 2.
In LFS, specific features identified as marfanoid include: a long, narrow face; tall, thin stature; long, slender limbs, fingers and toes (not unlike arachnodactyly) with joint hyperextensibility, shortened halluces (the big toes) and long second toes.
The diagnosis of marfanoid habitus in LFS is often delayed because many of the physical features and characteristics associated with it are usually not evident until adolescence.
Several X-linked syndromes include intellectual disability as part of the presentation. These include:
- Coffin–Lowry syndrome
- MASA syndrome
- MECP2 duplication syndrome
- X-linked alpha thalassemia mental retardation syndrome
- mental retardation and microcephaly with pontine and cerebellar hypoplasia
Gillespie syndrome, also called aniridia, cerebellar ataxia and mental deficiency. is a rare genetic disorder. The disorder is characterized by partial aniridia (meaning that part of the iris is missing), ataxia (motor and coordination problems), and, in most cases, intellectual disability. It is heterogeneous, inherited in either an autosomal dominant or autosomal recessive manner. Gillespie syndrome was first described by American ophthalmologist Fredrick Gillespie in 1965.
It causes facial abnormalities, skeletal malformation and occasionally neural tube defects; the skeletal disfigurements resolve to a degree in the course of development.
Mutations in different parts of the gene may lead to deafness or Stickler syndrome type III (eye problems: myopia, retinal detachment and skeletal abnormalities).
Infants and children: Infants that are born with Weissenbacher-Zweymüller syndrome usually have short bones in their arms and legs. The thigh and upper arm bones are wider than usual resulting in a dumbbell-shape while the bones of the vertebrae may be abnormal. Typical abnormal facial features can be wide-set protruding eyes (hypertelorism), a small and upturned nose with a flat bridge, small jaw (micrognathia) and a cleft palate. Some infants have high-frequency hearing loss. Infants may also exhibit a psychomotor delay. After the period of growth deficiency the individual makes improvements in bone growth leading to a normal physical development around age 5 or 6.
Adults: Many with Weissenbacher-Zweymüller syndrome have a catch-up growth phase causing the adults to not be unusually short. Many adults still will have hearing loss and typical abnormal facial features of Weissenbacher-Zweymüller syndrome.
X-linked intellectual disability (previously known as X-linked mental retardation) refers to forms of intellectual disability which are specifically associated with X-linked recessive inheritance.
As with most X-linked disorders, males are more heavily affected than females. Females with one affected X chromosome and one normal X chromosome tend to have milder symptoms.
Unlike many other types of intellectual disability, the genetics of these conditions are relatively well understood. It has been estimated there are ~200 genes involved in this syndrome; of these ~100 have been identified.
X-linked intellectual disability accounts for ~16% of all cases of intellectual disability in males.
Smith–Fineman–Myers syndrome (SFMS1), congenital disorder that causes birth defects. This syndrome was named after 3 men, Richard D. Smith, Robert M. Fineman and Gart G. Myers who discovered it around 1980.
Coffin–Lowry syndrome is a severe mental retardation associated with abnormalities of:
- Growth
- "In utero" growth is normal but post natal growth is retarded. Patients are sometimes microcephalic.
- Cardio-vascular
- Cardiac abnormalities affect 15% of the patients.
- Skeleton
- Progressive kyphoscoliosis affects 1 in 2 patients. Micrognathia is also associated with this syndrome.
- Patients may also have an underdeveloped upper jaw bone, abnormally prominent brows, or widely spaced eyes.
- Vision and audition
- Auditory abnormalities are frequent and often present. Vision abnormalities are not often present.
Alpha-thalassemia mental retardation syndrome (ATRX), also called alpha-thalassemia X-linked mental retardation, nondeletion type or ATR-X syndrome, is a condition caused by a mutated gene. Females with this mutated gene have no specific signs or features, but may demonstrate skewed X chromosome inactivation. Hemizygous males tend to be moderately intellectually disabled and have physical characteristics including coarse facial features, microcephaly (small head size), hypertelorism (widely spaced eyes), a depressed nasal bridge, a tented upper lip, and an everted lower lip. Mild or moderate anemia, associated with alpha-thalassemia, is part of the condition.
It is associated with "ATRX".
MECP2 Duplication Syndrome (M2DS) is a rare disease that is characterized by severe intellectual disability and impaired motor function. It is an X-linked genetic disorder caused by the overexpression of MeCP2 protein.
Say–Neger syndrome is a rare X-linked genetic disorder that is mostly characterized as developmental delay. It is one of the rare causes of short stature. It is closely related with trigonocephaly (a misshapen forehead due to premature fusion of bones in the skull). People with Say–Meyer syndrome have impaired growth, deficits in motor skills development and mental state.
It is suggested that it is from a X-linked transmission.
The acronym "MASA" describes the four major symptoms - Mental retardation, Aphasia, Shuffling gait, and Adducted thumbs. Another name for this syndrome is "L1 syndrome".
The term "CRASH", for "corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraplegia, and hydrocephalus" has also been used to describe L1CAM-related disorders.
The incidence of this condition is <1 per million population. It is found only in females as all affected males die before birth. Teeth with large roots (radiculomegaly), heart defects, and small eyes (microphthalmia) are the characteristic triad found in this syndrome.
Typical features of the condition include:
- Face
- Deep set eyes
- Broad nasal tip divided by a cleft
- Eyes
- Microphthalmia (small eyes)
- Early cataracts
- Glaucoma
- Teeth
- Radiculomegaly (teeth with very large roots)
- Delayed loss of primary teeth
- Missing (oligodontia) or abnormally small teeth
- Misaligned teeth
- Defective tooth enamel.
- Heart defects
- Atrial and/or ventricular defects
- Mitral valve prolapse
- Mild mental retardation and conductive or sensorineural hearing loss may occur.
Intellectual disability (ID) begins during childhood and involves deficits in mental abilities, social skills, and core activities of daily living (ADLs) when compared to same-aged peers. There often are no physical signs of mild forms of ID, although there may be characteristic physical traits when it is associated with a genetic disorder (e.g., Down syndrome).
The level of impairment ranges in severity for each person. Some of the early signs can include:
- Delays in reaching or failure to achieve milestones in motor skills development (sitting, crawling, walking)
- Slowness learning to talk or continued difficulties with speech and language skills after starting to talk
- Difficulty with self-help and self-care skills (e.g., getting dressed, washing, and feeding themselves)
- Poor planning or problem solving abilities
- Behavioral and social problems
- Failure to grow intellectually or continued infant-like behavior
- Problems keeping up in school
- Failure to adapt or adjust to new situations
- Difficulty understanding and following social rules
In early childhood, mild ID (IQ 50–69) may not be obvious or identified until children begin school. Even when poor academic performance is recognized, it may take expert assessment to distinguish mild intellectual disability from specific learning disability or emotional/behavioral disorders. People with mild ID are capable of learning reading and mathematics skills to approximately the level of a typical child aged nine to twelve. They can learn self-care and practical skills, such as cooking or using the local mass transit system. As individuals with intellectual disability reach adulthood, many learn to live independently and maintain gainful employment.
Moderate ID (IQ 35–49) is nearly always apparent within the first years of life. Speech delays are particularly common signs of moderate ID. People with moderate intellectual disability need considerable supports in school, at home, and in the community in order to fully participate. While their academic potential is limited, they can learn simple health and safety skills and to participate in simple activities. As adults, they may live with their parents, in a supportive group home, or even semi-independently with significant supportive services to help them, for example, manage their finances. As adults, they may work in a sheltered workshop.
People with severe or profound ID need more intensive support and supervision their entire lives. They may learn some ADLs, but an intellectual disability is considered severe or profound when individuals are unable to independently care for themselves without ongoing significant assistance from a caregiver throughout adulthood. Individuals with profound ID are completely dependent on others for all ADLs and to maintain their physical health and safety, although they may be able to learn to participate in some of these activities to limited degree.
DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome is a genetic disease which is inherited in an autosomal recessive fashion. DOOR syndrome is characterized by mental retardation, sensorineural deafness, abnormal nails and phalanges of the hands and feet, and variable seizures. A similar deafness-onychodystrophy syndrome is transmitted as an autosomal dominant trait and has no mental retardation. Some authors have proposed that it may be the same as Eronen Syndrome, but since both disorders are extremely rare it is hard to make a determination.
Various degrees of intensity and locations of epilepsy are associated with malformations of cortical development. Researchers suggest that approximately 40% of children diagnosed with drug-resistant epilepsy have some degree of cortical malformation.
Lissencephaly (to which pachygyria is most closely linked) is associated with severe mental retardation, epilepsy, and motor disability. Two characteristics of lissencephaly include its absence of convolutions (agyria) and decreased presence of convolutions (pachygyria). The types of seizures associated with lissencephaly include:
- persisting spasms
- focal seizures
- tonic seizures
- atypical seizures
- atonic seizures
Other possible symptoms of lissencephaly include telecanthus, estropia, hypertelorism, varying levels of mental retardation, cerebellar hypoplasia, corpus callosum aplasia, and decreased muscle tone and tendon reflexes. Over 90% of children affected with lissencephaly have seizures.
Patients with subcortical band heterotopia (another disorder associated with pachygyria) typically have milder symptoms and their cognitive function is closely linked to the thickness of the subcortical band and the degree of pachygyria present.
Males show more serious symptoms than females affected by this disorder.
The symptoms for males are:
1. Profound sensorineural hearing loss i.e, a complete or almost complete loss of hearing caused by abnormalities in the inner ear.
2. Weak muscle tone - Hypotonia.
3. Impaired muscle coordination - Ataxia.
4. Developmental delay.
5. Intellecual disability.
6. Vision loss caused by optic nerve atrophy in early childhood.
7. Peripheral neuropathy.
8. Recurrent infections, especially in the respiratory system.
9. Muscle weakness caused by recurrent infections.
Symptoms for females:
Very rarely seen hearing loss that begins in adulthood (age > 20 years) combined with ataxia and neuropathy. Optic atrophy and retinitis pigmentosa observed in some cases too.
Aspartylglucosaminuria (AGU) is an inherited disease that is characterized by a decline in mental functioning, accompanied by an increase in skin, bone and joint issues.
The disease is caused by a defect in an enzyme known as aspartylglucosaminidase. This enzyme plays a significant role in our bodies because it aids in breaking down certain sugars (for example, oligosaccharides) that are attached to specific proteins (for example, glycoproteins). Aspartylglucosaminuria itself is characterized as a lysosomal disease because it does deal with inadequate activity in an enzyme's function. Aspartylglucosaminidase functions to break down glycoproteins. These proteins are most abundant in the tissues of the body and in the surfaces of major organs, such as the liver, spleen, thyroid and nerves. When glycoproteins are not broken down, aspartylglucosaminidase backs up in the lysosomes along with other substances. This backup causes progressive damage to the tissues and organs.