Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Benign occipital epilepsy of childhood (BOEC) is an idiopathic localization-related epilepsy and consists of an evolving group of syndromes. Most authorities include two subtypes, an early subtype with onset between three and five years, and a late onset between seven and 10 years. Seizures in BOEC usually feature visual symptoms such as scotoma or fortifications (brightly colored spots or lines) or amaurosis (blindness or impairment of vision). Convulsions involving one half the body, hemiconvulsions, or forced eye deviation or head turning are common. Younger patients typically experience symptoms similar to migraine with nausea and headache, and older patients typically complain of more visual symptoms. The EEG in BOEC shows spikes recorded from the occipital (back of head) regions. The EEG and genetic pattern suggest an autosomal dominant transmission as described by Ruben Kuzniecky, et al. Lately, a group of epilepsies termed Panayiotopoulos syndrome that share some clinical features of BOEC but have a wider variety of EEG findings are classified by some as BOEC.
Benign centrotemporal lobe epilepsy of childhood or benign Rolandic epilepsy is an idiopathic localization-related epilepsy that occurs in children between the ages of 3 and 13 years, with peak onset in prepubertal late childhood. Apart from their seizure disorder, these patients are otherwise normal. This syndrome features simple focal seizures that involve facial muscles and frequently cause drooling. Although most episodes are brief, seizures sometimes spread and generalize. Seizures are typically nocturnal and confined to sleep. The EEG may demonstrate spike discharges that occur over the centrotemporal scalp over the central sulcus of the brain (the Rolandic sulcus) that are predisposed to occur during drowsiness or light sleep. Seizures cease near puberty. Seizures may require anticonvulsant treatment, but sometimes are infrequent enough to allow physicians to defer treatment.
The age of onset of seizures is typically between three and five, though onset can occur at an earlier or later age. The syndrome shows clear parallels to West syndrome, enough to suggest a connection.
Daily multiple seizures are typical in LGS. Also typical is the broad range of seizures that can occur, larger than that of any other epileptic syndrome. The most frequently occurring seizure type is tonic seizures, which are often nocturnal (90%); the second most frequent are myoclonic seizures, which often occur when the person is over-tired.
Atonic, atypical absence, tonic, complex partial, focalized and tonic–clonic seizures are also common. Additionally, about half of patients will have status epilepticus, usually the nonconvulsive type, which is characterized by dizziness, apathy, and unresponsiveness. The seizures can cause sudden falling (or spasms in tonic, atonic and myoclonic episodes) and/or loss of balance, which is why patients often wear a helmet to prevent head injury.
In addition to daily multiple seizures of various types, children with LGS frequently have arrested/slowed psycho-motor development and behavior disorders.
The syndrome is also characterized by an (between-seizures) EEG featuring slow spike-wave complexes.
Dravet syndrome has been characterized by prolonged febrile and non-febrile seizures within the first year of a child’s life. This disease progresses to other seizure types like myoclonic and partial seizures, psychomotor delay, and ataxia. It is characterized by cognitive impairment, behavioral disorders, and motor deficits. Behavioral deficits often include hyperactivity and impulsiveness, and in more rare cases, autistic-like behaviors. Dravet syndrome is also associated with sleep disorders including somnolence and insomnia. The seizures experienced by people with Dravet syndrome become worse as the patient ages since the disease is not very predictable when first diagnosed. This coupled with the range of severity differing between each individual diagnosed and the resistance of these seizures to drugs has made it challenging to develop treatments.
Dravet syndrome appears during the first year of life, often beginning around six months of age with frequent febrile seizures (fever-related seizures). Children with Dravet syndrome typically experience a lagged development of language and motor skills, hyperactivity and sleep difficulties, chronic infection, growth and balance issues, and difficulty relating to others. The effects of this disorder do not diminish over time, and children diagnosed with Dravet syndrome require fully committed caretakers with tremendous patience and the ability to closely monitor them.
Febrile seizures are divided into two categories known as simple and complex. A febrile seizure would be categorized as complex if it has occurred within 24 hours of another seizure or if it lasts longer than 15 minutes. A febrile seizure lasting less than 15 minutes would be considered simple. Sometimes modest hyperthermic stressors like physical exertion or a hot bath can provoke seizures in affected individuals. However, any seizure uninterrupted after 5 minutes, without a resumption of postictal (more normal; recovery-type; after-seizure) consciousness can lead to potentially fatal status epilepticus.
The hallmark characteristic of PCDH19 gene-related epilepsy is early-onset cluster seizures that often cause cyanotic spells, which start in infancy or early childhood. The onset of the first cluster of seizures usually coincides with a fever (febrile seizures), however subsequent seizures may be febrile or afebrile. The seizure clusters are generally brief seizures, lasting 1–5 minutes, often accompanied by fearful screaming observed in 63% of girls. These cluster seizures can occur more than 10 times a day over several days, with varying amounts of time between seizure clusters.
Over time, children with PCDH19 gene-related epilepsy tend to exhibit multiple seizure types, including focal, generalized tonic-clonic, tonic, atonic, myclonus, and absence seizures. In a small study of 35 female patients with PCDH19 gene-related epilepsy, rare episodes of status epilepticus occurred in about 30% of patients in the early course of the disorder.
In PCDH19 gene-related epilepsy, the seizures are often refractory to treatment, especially in infancy and childhood. Additionally, seizures are usually characterized by persistence of cluster seizures, with variable frequency. In a study of 35 female patients with PCDH19 gene-related epilepsy, approximately 30% had become seizure free in the girl's childhood (mean age of 12 years), yet some continued into adulthood. In the same study, a few patients still had recurrent cluster seizures that evolved into status epilepticus in childhood or early adolescence.
Ohtahara syndrome is rare and the earliest-appearing age-related epileptic encephalopathy, with seizure onset occurring within the first three months of life, and often in the first ten days. Many, but not all, cases of OS evolve into other seizure disorders, namely West syndrome and Lennox-Gastaut syndrome.
The primary outward manifestation of OS is seizures, usually presenting as tonic seizures (a generalized seizure involving a sudden stiffening of the limbs). Other seizure types that may occur include partial seizures, clusters of infantile spasms, and, rarely, myoclonic seizures. In addition to seizures, children with OS exhibit profound mental and physical retardation.
Clinically, OS is characterized by a "burst suppression" pattern on an EEG. This pattern involves high voltage spike wave discharge followed by little brain wave activity.
It is named for the Japanese neurologist Shunsuke Ohtahara (1930–2013), who identified it in 1976.
The clinical manifestations of absence seizures vary significantly among patients. Impairment of consciousness is the essential symptom, and may be the only clinical symptom, but this can be combined with other manifestations. The hallmark of the absence seizures is abrupt and sudden-onset impairment of consciousness, interruption of ongoing activities, a blank stare, possibly a brief upward rotation of the eyes. If the patient is speaking, speech is slowed or interrupted; if walking, they stand transfixed; if eating, the food will stop on its way to the mouth. Usually, the patient will be unresponsive when addressed. In some cases, attacks are aborted when the patient is called. The attack lasts from a few seconds to half a minute, and evaporates as rapidly as it commenced. Absence seizures generally are not followed by a period of disorientation or lethargy (post-ictal state), in contrast to the majority of seizure disorders.
1. Absence with impairment of consciousness only as per the above description.
2. Absence with mild clonic components. Here the onset of the attack is indistinguishable from the above, but clonic components may occur in the eyelids, at the corner of the mouth, or in other muscle groups which may vary in severity from almost imperceptible movements to generalised myoclonic jerks. Objects held in the hand may be dropped.
3. Absence with atonic components. Here there may be a diminution in tone of muscles subserving posture as well as in the limbs leading to dropping of the head, occasionally slumping of the trunk, dropping of the arms, and relaxation of the grip. Rarely tone is sufficiently diminished to cause this person to fall.
4. Absence with tonic components. Here during the attack tonic muscular contraction may occur, leading to increase in muscle tone which may affect the extensor muscles or the flexor muscles symmetrically or asymmetrically. If the patient is standing, the head may be drawn backward and the trunk may arch. This may lead to retropulsion, which may cause eyelids to twitch rapidly, eyes may jerk upwards or the patients head may rock back and forth slowly, as if nodding. The head may tonically draw to one or another side.
5. Absence with automatisms. Purposeful or quasipurposeful movements occurring in the absence of awareness during an absence attack are frequent and may range from lip licking and swallowing to clothes fumbling or aimless walking. If spoken to, the patient may grunt, and when touched or tickled may rub the site. Automatisms are quite elaborate and may consist of combinations of the above described movements or may be so simple as to be missed by casual observation.
6. Absence with autonomic components. These may be pallor, and less frequently flushing, sweating, dilatation of pupils and incontinence of urine.
Mixed forms of absence frequently occur.
These seizures can happen a few times a day or in some cases hundreds of times a day, to the point that the person cannot concentrate in school or in other situations requiring sustained, concentrated attention.
Beyond early-onset and treatment-resistant cluster seizures, PCDH19 gene-related epilepsy is usually, but not always, associated with cognitive and sensory impairment of varying degrees, and psychiatric and behavioral problems. It is estimated that up to 60 to 75% of the females have cognitive deficits, ranging from mild to severe intellectual disability, which do not appear to be related to frequency or severity of seizures. Development over the course of a female patients’ childhood can follow one of three courses: delays from birth that persist into adulthood, normal development and then regression, or normal intellectual development. It is not yet clear why some people experience delayed intellectual growth and others regress with epilepsy.
From the University of Melbourne study, two-thirds of PCDH19 gene-related epilepsy patients have borderline intellectual functioning or intellectual disability, while one third have normal intelligence. A connection to depression, autism, obsessive and aggressive behaviors and other disorders has been observed in PCDH19 gene-related epilepsy. Approximately 40-60% of girls diagnosed with a PCDH19 mutation are on the autism spectrum.
Many of those with PCDH19 gene mutations also exhibit behavioral and psychological problems – including ADHD, aggression, obsessive-compulsive disorder, and anxiety. Other neurological abnormalities may present, including sleep disturbances, ictal apnea, motor deficits, hypotonia, language delay, sensory integration problems and dysautonomia.
These syndromes are childhood absence epilepsy, epilepsy with myoclonic absences, juvenile absence epilepsy and juvenile myoclonic epilepsy. Other proposed syndromes are Jeavons syndrome (eyelid myoclonia with absences), and genetic generalised epilepsy with phantom absences.
These types of seizures are also known to occur to patients suffering with porphyria and can be triggered by stress or other porphyrin-inducing factors.
A gelastic seizure is typically caused by a hypothalamic hamartoma, or a brain tumor. A hypothalamic hamartoma is defined as a benign mass of glial tissue on or near the hypothalamus. The size of the hamartoma can vary from one centimeter to larger than three centimeters. They can cause several different types of seizures including a Gelastic Seizure. These structures can be detected with different imaging modalities such as computed tomography and magnetic resonance imaging. A computed tomography scan of an individual with a hypothalamic hamartoma would reveal an suprasellar mass with the same density as brain tissue. Images of these masses are not enhanced with the use of contrast. However, although a computed tomography scan may be useful in diagnosing the cause of a seizure, in the case of a hypothalamic hamartoma, magnetic resonance imaging is the tool of choice due to the cerebrospinal fluid which defines these masses. Photon emission computed tomography may also be used. This involves the use of a radiotracer which is taken up by the ictal region of the brain which is typically where the tumor lies. Gelastic seizures have been observed after taking a birth control pill (Maxim (R)).
Optic nerve hypoplasia is the only reported condition with gelastic seizures without hypothalamic hamartomas, suggesting that hypothalamic disorganization alone can cause gelastic seizures.
There are six main types of generalized seizures: tonic-clonic, tonic, clonic, myoclonic, absence, and atonic seizures. They all involve a loss of consciousness and typically happen without warning.
- Tonic-clonic seizures present with a contraction of the limbs followed by their extension, along with arching of the back for 10–30 seconds. A cry may be heard due to contraction of the chest muscles. The limbs then begin to shake in unison. After the shaking has stopped it may take 10–30 minutes for the person to return to normal.
- Tonic seizures produce constant contractions of the muscles. The person may turn blue if breathing is impaired.
- Clonic seizures involve shaking of the limbs in unison.
- Myoclonic seizures involve spasms of muscles in either a few areas or generalized through the body.
- Absence seizures can be subtle, with only a slight turn of the head or eye blinking. The person often does not fall over and may return to normal right after the seizure ends, though there may also be a period of post-ictal disorientation.
- Atonic seizures involve the loss of muscle activity for greater than one second. This typically occurs bilaterally (on both sides of the body).
Focal seizures are often preceded by certain experiences, known as an aura. These may include: sensory, visual, psychic, autonomic, olfactory or motor phenomena.
In a complex partial seizure a person may appear confused or dazed and can not respond to questions or direction. Focal seizure may become generalized.
Jerking activity may start in a specific muscle group and spread to surrounding muscle groups—known as a "Jacksonian march". Unusual activities that are not consciously created may occur. These are known as automatisms and include simple activities like smacking of the lips or more complex activities such as attempts to pick something up.
The main sign of a gelastic seizure is a sudden outburst of laughter or crying with no apparent cause. The laughter may sound unpleasant and sardonic rather than joyful. The outburst usually lasts for less than a minute. During or shortly after a seizure, an individual might display some twitching, strange eye movements, lip smacking, fidgeting or mumbling. If a person who suffers from the seizures is hooked up to an electroencephalogram it will reveal interictal epileptic discharges. This syndrome usually manifests itself before the individual reaches the age of three or four. The temporal lobes, and the hypothalamus are the areas of the brain with the most involvement with these seizures. This may cause learning disabilities, and faulted cognitive function as well. It is not uncommon for children to have tonic-clonic seizures, and atonic seizures directly following the seizure. Those that are associated with hypothalamic hamartomas may occur as often as several times hourly and typically begin during infancy. Seizures that occur in infancy may include bursts of cooing, respirations, giggling, and smiling. Due to early hypothalamic-pituitary-gonadal axis activation in girls who suffer from the seizures, it is not uncommon for them to display secondary sex characteristics before the age of eight.
Epileptic symptoms are frequently the product of the spread of overactivation occurring within one central foci that travels to lateral brain regions thereby causing an array of symptoms. Due to the massive amount of diversity in both the cognitive and motor functions that occur within the frontal lobes, there is an immense variety in the types of symptoms that can arise from epileptic seizures based on the side and topography of the focal origin. In general these symptoms can range anywhere from asymmetric and abnormal body positioning to repetitive vocal outbursts and repetitive jerking movements. The symptoms typically come in short bursts that last less than a minute and often occur while a patient is sleeping. In most cases, a patient will experience a physical or emotional Aura of tingling, numbness or tension prior to a seizure occurring. Fear is associated with temporal and frontal lobe epilepsies, but in FLE the fear is predominantly expressed on the person's face whereas in TLE the fear is subjective and internal, not perceptible to the observer.
Tonic posture and clonic movements are common symptoms among most of the areas of the frontal lobe, therefore the type of seizures associated with frontal lobe epilepsy are commonly called tonic-clonic seizures. Dystonic motor movements are common to both TLE and FLE, but are usually the first symptom in FLE episodes where they are quite brief and do not affect consciousness. The seizures are complex partial, simple partial, secondarily generalized or a combination of the three. These partial seizures are often misdiagnosed as psychogenic seizures. A wide range of more specific symptoms arise when different parts of the frontal cortex are affected.
- Supplementary motor area (SMA)
- The onset and relief of the seizure are quite abrupt.
- The tonic posturing in this area is unilateral or asymmetric between the left and right hemispheres. A somatosensory aura frequently precedes many large motor and vocal symptoms and most often the afflicted person is responsive.
- "Motor symptoms": Facial grimacing and complex automatisms like kicking and pelvic thrusting
- "Vocal symptoms": Laughing, yelling, or speech arrest.
- Primary motor cortex
- The primary motor cortex has jacksonian seizures that spread to adjacent areas of the lobe which often trigger a second round of seizures originating in another cortical area. The seizures are much simpler than those that originate in the SMA and are usually clonic or myoclonic movements with speech arrest. Some dystonic or contralateral adversive posturing may also be present.
- Medial frontal, cingulate gyrus, orbitofrontal, or frontopolar regions
- Motor symptoms of seizures in this area are accompanied by emotional feelings and viscerosensory symptoms. Motor and vocal agitation are similar to that of the SMA with short repetitive thrashing, pedaling, thrusting, laughing, screaming and/or crying.
- This is some of what can cause the misdiagnosis of a psychological disorder.
- Dorsolateral cortex
- This area does not seem to have many motor symptoms beyond tonic posturing or clonic movements. Contralateral or less commonly ipsilateral head turn and eye deviation are commonly associated with this area as well.
- Operculum
- Many of the symptoms associated with this area involve the head and digestive tract: swallowing, salivation, mastication and possibly gustatory hallucinations. Preceding the seizure the person is fearful and often has an epigastric aura. There is not much physical movement except clonic facial movements. Speech is often arrested.
"Focal aware" means that the level of consciousness is not altered during the seizure. In temporal lobe epilepsy, a focal seizure usually causes abnormal sensations only.
These may be:
- Sensations such as déjà vu (a feeling of familiarity), jamais vu (a feeling of unfamiliarity)
- Amnesia; or a single memory or set of memories
- A sudden sense of unprovoked fear and anxiety
- Nausea
- Auditory, visual, olfactory, gustatory, or tactile hallucinations.
- Visual distortions such as macropsia and micropsia
- Dissociation or derealisation
- Synesthesia (stimulation of one sense experienced in a second sense) may transpire.
- Dysphoric or euphoric feelings, fear, anger, and other emotions may also occur. Often, the patient cannot describe the sensations.
Olfactory hallucinations often seem indescribable to patients beyond "pleasant" or "unpleasant".
Focal aware seizures are often called "auras" when they serve as a warning sign of a subsequent seizure. Regardless an "aura" is actually a seizure itself, and such a focal seizure may or may not progress to a focal impaired awareness seizure. People who only experience focal aware seizures may not recognize what they are, nor seek medical care.
Episodes that include complex hyperactivity of the proximal portions of the limbs that lead to increased overall motor activity are called hypermotor seizures. When associated with bizarre movements and vocalizations these seizures are often misdiagnosed as pseudoseizures or other episodic movement disorders such as psychogenic movement disorders, familial paroxysmal dystonic choreoathetosis, paroxysmal kinesogenic choreoathetosis, or episodic ataxia type 1. Hypermotor seizure in children are often confused with pavor nocturnus (night terrors). Paroxysmal nocturnal dystonia or hypnogenic paroxysmal dystonia are other names given to describe FLE symptoms but are simply just FLE.
Autosomal Dominant Nocturnal Frontal Lobe Epilepsy (ADNFLE) is the best understood form of frontal lobe epilepsy but is often misdiagnosed as sleep apnea. Both disorders are characterized by awakening during the night which leads to daytime sleepiness. Some symptoms of sleep apnea overlap with those of ADNFLE, such as sudden awakening accompanied by a feeling of choking and on occasion motor activity which makes diagnosis difficult based on symptoms alone. Video surveillance as well as EEG is occasionally needed to differentiate between the two disorders. It has been reported that sleep apnea might be associated with epilepsy which would account for some of the misdiagnoses.
Focal impaired awareness seizures are seizures which impair consciousness to some extent: they alter the person's ability to interact normally with their environment. They usually begin with a focal aware seizure, then spread to a larger portion of the temporal lobe, resulting in impaired consciousness. They may include autonomic and psychic features present in focal aware seizures.
Signs may include:
- Motionless staring
- Automatic movements of the hands or mouth
- Confusion and disorientation
- Altered ability to respond to others, unusual speech
- Transient aphasia (losing ability to speak, read, or comprehend spoken word)
These seizures tend to have a warning or aura before they occur, and when they occur they generally tend to last only 1–2 minutes. It is not uncommon for an individual to be tired or confused for up to 15 minutes after a seizure has occurred, although postictal confusion can last for hours or even days. Though they may not seem harmful, due to the fact that the individual does not normally seize, they can be extremely harmful if the individual is left alone around dangerous objects. For example, if a person with complex partial seizures is driving alone, this can cause them to run into the ditch, or worse, cause an accident involving multiple people. With this type, some people do not even realize they are having a seizure and most of the time their memory from right before or after the seizure is wiped. First-aid is only required if there has been an injury or if this is the first time a person has had a seizure.
Lennox–Gastaut syndrome (LGS) is a childhood-onset epilepsy that most often appears between the second and sixth year of life. LGS is characterized by a triad of signs including frequent seizures of multiple types, an abnormal EEG pattern of less than 2.5 Hz slow spike wave activity, and moderate to severe intellectual impairment.
The signs of vertiginous epilepsy often occur without a change in the subject’s consciousness so that they are still aware while experiencing the symptoms. It is often described as a sudden onset of feeling like one is turning in one direction, typically lasting several seconds. Although subjects are aware during an episode, they often cannot remember specific details due to disorientation, discomfort, and/or partial cognitive impairment. This sensation of rotational movement in the visual and auditory planes is also known as a vertiginous aura (symptom), which can precede a seizure or may constitute a seizure itself. Auras are a “portion of the seizure that occur before consciousness is lost and for which memory is retained afterwards.” Auras can be focused in different regions of the brain and can thus affect different functions. Some such symptoms that may accompany vertiginous epilepsy include:
- Auditory hallucination
- Cognitive impairment
- Motor activity
- Ictal behavior
- Limbic auras
Many people tend to mistake dizziness as vertigo, and although they sound similar, dizziness is not considered a symptom of vertiginous epilepsy. Dizziness is the sensation of imbalance or floating, impending loss of consciousness, and/or confusion. This is different from vertigo which is characterized by the illusion of rotational movement caused by the “conflict between the signals sent to the brain by balance- and position-sensing systems of the body”.
Benign familial infantile epilepsy (BFIE), also known as benign familial infantile seizures (BFIS) or benign familial infantile convulsions (BFIC) is an epilepsy syndrome. Affected children, who have no other health or developmental problems, develop seizures during infancy. These seizures have focal origin within the brain but may then spread to become generalised seizures. The seizures may occur several times a day, often grouped in clusters over one to three days followed by a gap of one to three months. Treatment with anticonvulsant drugs is not necessary but they are often prescribed and are effective at controlling the seizures. This form of epilepsy resolves after one or two years, and appears to be completely benign. The EEG of these children, between seizures, is normal. The brain appears normal on MRI scan.
A family history of epilepsy in infancy distinguishes this syndrome from the non-familial classification (see benign infantile epilepsy), though the latter may be simply sporadic cases of the same genetic mutations. The condition is inherited with an autosomal dominant transmission. There are several genes responsible for this syndrome, on chromosomes 2, 16 and 19. It is generally described as idiopathic, meaning that no other neurological condition is associated with it or causes it. However, there are some forms that are linked to neurological conditions. One variant known as infantile convulsions and choreoathetosis (ICCA) forms an association between BFIE and paroxysmal kinesigenic choreoathetosis and has been linked to the PRRT2 gene on chromosome 16. An association with some forms of familial hemiplegic migraine (FHM) has also been found. Benign familial infantile epilepsy is not genetically related to benign familial neonatal epilepsy (BFNE), which occurs in neonates. However, a variation with seizure onset between two days and seven months called "benign familial neonatal–infantile seizures" (BFNIS) has been described, which is due to a mutation in the SCN2A gene.
Focal aware seizures are seizures which affect only a small region of the brain, often the temporal lobes or structures found there such as the hippocampi. People who have focal aware seizures remain conscious. Focal aware seizures often precede larger focal impaired awareness seizures, where the abnormal electrical activity spreads to a larger area of the brain. This can result in a tonic-clonic seizure.
- Presentation
Focal onset aware seizures are a very subjective experience, and the symptoms vary greatly between people. This is due to the varying locations of the brain the seizures originate in e.g.: Rolandic. A focal aware seizure may go unnoticed by others or shrugged off by the sufferer as merely a "funny turn." Focal aware seizures usually start suddenly and are very brief, typically lasting 60 to 120 seconds.
Some common symptoms of a focal onset aware seizure, when the person is awake, are:
- preserved consciousness
- sudden and inexplicable feelings of fear, anger, sadness, happiness or nausea
- sensations of falling or movement
- experiencing of unusual feelings or sensations
- altered sense of hearing, smelling, tasting, seeing, and tactile perception (sensory illusions or hallucinations), or feeling as though the environment is not real (derealization) or dissociation from the environment or self (depersonalization)
- a sense of spatial distortion—things close by may appear to be at a distance
- déjà vu (familiarity) or jamais vu (unfamiliarity)
- laboured speech or inability to speak at all
- usually the event is remembered in detail
When the seizure occurs during sleep, the person will often become semi-conscious and act out a dream they were having while engaging with the real environment as normal. Objects and people usually appear normal or only slightly distorted to them, and will be able to communicate with them on an otherwise normal level.
However, since the person is still acting in the dream-like state from which they woke, they will assimilate any hallucinations or delusions into their communication, often speaking to a hallucinatory person or speaking of events or thoughts normally pertaining to the dream they were having or other hallucination.
While asleep symptoms include:
- onset usually in REM sleep
- dream like state
- appearance of full consciousness
- hallucinations or delusions
- behavior or visions typical in dreams
- ability to engage with the environment and other people as in full consciousness, though often behaving abnormally, erratically, or failing to be coherent
- complete amnesia or assimilating the memory as though it was a normal dream on regaining full consciousness
Although hallucinations may occur during focal aware seizures they are differentiated from psychotic symptoms by the fact that the person is usually aware that the hallucinations are not real.
- Jacksonian march
Jacksonian march or Jacksonian seizure is a phenomenon where a focal aware seizure spreads from the distal part of the limb toward the face (on same side of body). They involve a progression of the location of the seizure in the brain, which leads to a "march" of the motor presentation of symptoms.
Jacksonian seizures are initiated with abnormal electrical activity within the primary motor cortex. They are unique in that they travel through the primary motor cortex in succession, affecting the corresponding muscles, often beginning with the fingers. This is felt as a tingling sensation, or a feeling of waves through the fingers when touched together. It then affects the hand and moves on to more proximal areas on the same side of body. Symptoms often associated with a Jacksonian seizure are sudden head and eye movements, tingling, numbness, smacking of the lips, and sudden muscle contractions. Most of the time any one of these actions can be seen as normal movements, without being associated with the seizure occurring. They occur at no particular moment and last only briefly. They may result in secondary generalized seizure involving both hemispheres. They can also start at the feet, manifesting as tingling or pins and needles, and there are painful cramps in the foot muscles, due to the signals from the brain. Because it is a partial seizure, the postictal state is of normal consciousness .
Generalized seizures can be either absence seizures, myoclonic seizures, clonic seizures, tonic-clonic seizures or atonic seizures.
Generalized seizures occur in various seizure syndromes, including myoclonic epilepsy, familial neonatal convulsions, childhood absence epilepsy, absence epilepsy, infantile spasms (West's syndrome), Juvenile Myoclonic Epilepsy and Lennox-Gastaut syndrome.
A focal impaired awareness seizure is a seizure that is associated with unilateral cerebral hemisphere involvement and causes impairment of awareness or responsiveness, i.e. alteration of consciousness.
- Presentation
Focal impaired awareness seizures are often preceded by an aura. The seizure aura is a focal aware seizure. The aura may manifest itself as a feeling of déjà vu, jamais vu, fear, euphoria or depersonalization. The aura might also occur as a visual disturbance, such as tunnel vision or a change in the perceived size of objects. Once consciousness is impaired, the person may display automatisms such as lip smacking, chewing or swallowing. There may also be loss of memory (amnesia) surrounding the seizural event. The person may still be able to perform routine tasks such as walking, although such movements are not purposeful or planned. Witnesses may not recognize that anything is wrong.
Focal impaired awareness seizures might arise from any lobe of the brain. They most commonly arise from the temporal lobe, particularly the amygdala, hippocampus, and neocortical regions. A common associated brain abnormality is mesial temporal sclerosis. Mesial temporal sclerosis is a specific pattern of hippocampal neuronal loss accompanied by hippocampal gliosis and atrophy. Focal onset impaired awareness seizures occur when excessive and synchronous electrical brain activity causes the impaired awareness and responsiveness. The abnormal electrical activity might spread to the rest of the brain and cause a "focal to bilateral seizure" or a generalized tonic–clonic seizure. The newer classification of 2017 groups only focal and generalized seizures, and generalised seizures are those that involve both sides of the brain from the onset.
Generalized epilepsy, also known as primary generalized epilepsy or idiopathic epilepsy, is a form of epilepsy characterised by generalised seizures with no apparent cause. Generalized seizures, as opposed to focal seizures, are a type of seizure that impairs consciousness and distorts the electrical activity of the whole or a larger portion of the brain (which can be seen, for example, on electroencephalography, EEG).
Generalized epilepsy is "primary" because the epilepsy is the originally diagnosed condition itself, as opposed to "secondary" epilepsy, which occurs as a symptom of a diagnosed condition.
The condition may be difficult to diagnose. The subject may be unaware they have a seizure disorder. To others, the involuntary movements made during sleep may appear no different from those typical of normal sleep.People who have nocturnal seizures may notice unusual conditions upon awakening in the morning, such as a headache, having wet the bed, having bitten the tongue, a bone or joint injury, muscle strains or weakness, fatigue, or lightheadedness. Others may notice unusual mental behaviors consistent with the aftermath of a seizure. Objects near the bed may have been knocked to the floor, or the subject may be surprised to find themselves on the floor.
There are many risks associated with nocturnal seizures including concussion, suffocation and sudden unexpected death (SUDEP).