Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In this situation the testes are abnormal, atrophic, or absent, and sperm production severely disturbed to absent. FSH levels tend to be elevated (hypergonadotropic) as the feedback loop is interrupted (lack of feedback inhibition on FSH). The condition is seen in 49–93% of men with azoospermia. Testicular failure includes absence of failure production as well as low production and maturation arrest during the process of spermatogenesis.
Causes for testicular failure include congenital issues such as in certain genetic conditions (e.g. Klinefelter syndrome), some cases of cryptorchidism or Sertoli cell-only syndrome as well as acquired conditions by infection (orchitis), surgery (trauma, cancer), radiation, or other causes. Mast cells releasing inflammatory mediators appear to directly suppress sperm motility in a potentially reversible manner, and may be a common pathophysiological mechanism for many causes leading to inflammation. Testicular azoospermia is a kind of non-obstructive azoospermia.
Generally, men with unexplained hypergonadotropic azoospermia need to undergo a chromosomal evaluation.
Pretesticular azoospermia is characterized by inadequate stimulation of otherwise normal testicles and genital tract. Typically, follicle-stimulating hormone (FSH) levels are low (hypogonadotropic) commensurate with inadequate stimulation of the testes to produce sperm. Examples include hypopituitarism (for various causes), hyperprolactinemia, and exogenous FSH suppression by testosterone. Chemotherapy may suppress spermatogenesis. Pretesticular azoospermia is seen in about 2% of azoospermia. Pretesticular azoospermia is a kind of non-obstructive azoospermia.
The diagnosis of infertility begins with a medical history and physical exam by a physician, physician assistant, or nurse practitioner. Typically two separate semen analyses will be required. The provider may order blood tests to look for hormone imbalances, medical conditions, or genetic issues.
The history should include prior testicular or penile insults (torsion, cryptorchidism, trauma), infections (mumps orchitis, epididymitis), environmental factors, excessive heat, radiation, medications, and drug use (anabolic steroids, alcohol, smoking).
Sexual habits, frequency and timing of intercourse, use of lubricants, and each partner's previous fertility experiences are important.
Loss of libido and headaches or visual disturbances may indicate a pituitary tumor.
The past medical or surgical history may reveal thyroid or liver disease (abnormalities of spermatogenesis), diabetic neuropathy (retrograde ejaculation), radical pelvic or retroperitoneal surgery (absent seminal emission secondary to sympathetic nerve injury), or hernia repair (damage to the vas deferens or testicular blood supply).
A family history may reveal genetic problems.
A supplemental system of phenotypic grading that uses seven classes instead of the traditional three was proposed by pediatric endocrinologist Charmian A. Quigley et al. in 1995. The first six grades of the scale, grades 1 through 6, are differentiated by the degree of genital masculinization; grade 1 is indicated when the external genitalia is fully masculinized, grade 6 is indicated when the external genitalia is fully feminized, and grades 2 through 5 quantify four degrees of increasingly feminized genitalia that lie in the interim. Grade 7 is indistinguishable from grade 6 until puberty, and is thereafter differentiated by the presence of secondary terminal hair; grade 6 is indicated when secondary terminal hair is present, whereas grade 7 is indicated when it is absent. The Quigley scale can be used in conjunction with the traditional three classes of AIS to provide additional information regarding the degree of genital masculinization, and is particularly useful when the diagnosis is PAIS.
Partial androgen insensitivity syndrome is diagnosed when the degree of androgen insensitivity in an individual with a 46,XY karyotype is great enough to partially prevent the masculinization of the genitalia, but is not great enough to completely prevent genital masculinization. This includes any phenotype resulting from androgen insensitivity where the genitalia is partially, but not completely masculinized. Genital ambiguities are frequently detected during clinical examination at birth, and consequently, a PAIS diagnosis can be made during infancy as part of a differential diagnostic workup.
Pubertal undervirilization is common, including gynecomastia, decreased secondary terminal hair, and / or a high pitched voice. The phallic structure ranges from a penis with varying degrees of diminished size and hypospadias to a slightly enlarged clitoris. Wolffian structures (the epididymides, vasa deferentia, and seminal vesicles) are typically partially or fully developed. The prostate is typically small or impalpable. Müllerian remnants are rare, but have been reported.
The gonads in individuals with PAIS are testes, regardless of phenotype; during the embryonic stage of development, testes form in an androgen-independent process that occurs due to the influence of the SRY gene on the Y chromosome. Cryptorchidism is common, and carries with it a 50% risk of germ cell malignancy. If the testes are located intrascrotally, there may still be significant risk of germ cell malignancy; studies have not yet been published to assess this risk.
Predominantly male phenotypes vary in the degree of genital undermasculinization to include micropenis, chordee, scrotum, and / or pseudovaginal perineoscrotal hypospadias. Impotence may be fairly common, depending on phenotypic features; in one study of 15 males with PAIS, 80% of those interviewed indicated that they had some degree of impotence. Anejaculation appears to occur somewhat independently of impotence; some men are still able to ejaculate despite impotence, and others without erectile difficulties cannot. Predominantly female phenotypes include a variable degree of labial fusion and clitoromegaly. Ambiguous phenotypic states include a phallic structure that is intermediate between a clitoris and a penis, and a single perineal orifice that connects to both the urethra and the vagina (i.e. urogenital sinus). At birth, it may not be possible to immediately differentiate the external genitalia of individuals with PAIS as being either male or female, although the majority of individuals with PAIS are raised male.
Given the wide diversity of phenotypes associated with PAIS, the diagnosis is often further specified by assessing genital masculinization. Grades 2 through 5 of the Quigley scale quantify four degrees of increasingly feminized genitalia that correspond to PAIS.
Grade 2, the mildest form of PAIS, presents with a predominantly male phenotype that presents with minor signs of undermasculinized genitalia, such as isolated hypospadias, which can be severe. Hypospadias may manifest with a partially formed channel from the urethral opening to the glans. Until recently, it was thought that isolated micropenis was not a manifestation of PAIS. However, in 2010, two cases of PAIS manifesting with isolated micropenis were documented.
Grade 3, the most common phenotypic form of PAIS, features a predominantly male phenotype that is more severely undermasculinized, and typically presents with micropenis and pseudovaginal perineoscrotal hypospadias with scrotum.
Grade 4 presents with a gender ambiguous phenotype, including a phallic structure that is intermediate between a clitoris and a penis. The urethra typically opens into a common channel with the vagina (i.e. urogenital sinus).
Grade 5, the form of PAIS with the greatest degree of androgen insensitivity, presents with a mostly female phenotype, including separate urethral and vaginal orifices, but also shows signs of slight masculinization including mild clitoromegaly and / or partial labial fusion.
Previously, it was erroneously thought that individuals with PAIS were always infertile; at least one case report has been published that describes fertile men that fit the criteria for grade 2 PAIS (micropenis, penile hypospadias, and gynecomastia).
Individuals with complete androgen insensitivity syndrome (grades 6 and 7 on the Quigley scale) are born phenotypically female, without any signs of genital masculinization, despite having a 46,XY karyotype. Symptoms of CAIS do not appear until puberty, which may be slightly delayed, but is otherwise normal except for absent menses and diminished or absent secondary terminal hair. Axillary hair (i.e. armpit hair) fails to develop in one third of all cases. External genitalia is normal, although the labia and clitoris are sometimes underdeveloped. The vaginal depth varies widely, but is typically shorter than unaffected women; one study of eight women with CAIS measured the average vaginal depth to be 5.9 cm (vs. 11.1 ± 1.0 cm for unaffected women ). In some extreme cases, the vagina has been reported to be aplastic (resembling a "dimple"), though the exact incidence of this is unknown.
The gonads in these women are not ovaries, but instead, are testes; during the embryonic stage of development, testes form in an androgen-independent process that occurs due to the influence of the SRY gene on the Y chromosome. They may be located intra-abdominally, at the internal inguinal ring, or may herniate into the labia majora, often leading to the discovery of the condition. Testes in affected women have been found to be atrophic upon gonadectomy. Testosterone produced by the testes cannot be directly used due to the mutant androgen receptor that characterizes CAIS; instead, it is aromatized into estrogen, which effectively feminizes the body and accounts for the normal female phenotype observed in CAIS.
Immature sperm cells in the testes do not mature past an early stage, as sensitivity to androgens is required in order for spermatogenesis to complete. Germ cell malignancy risk, once thought to be relatively high, is now thought to be approximately 2%. Wolffian structures (the epididymides, vasa deferentia, and seminal vesicles) are typically absent, but will develop at least partially in approximately 30% of cases, depending on which mutation is causing the CAIS. The prostate, like the external male genitalia, cannot masculinize in the absence of androgen receptor function, and thus remains in the female form.
The Müllerian system (the fallopian tubes, uterus, and upper portion of the vagina) typically regresses due to the presence of anti-Müllerian hormone originating from the Sertoli cells of the testes. These women are thus born without fallopian tubes, a cervix, or a uterus, and the vagina ends "blindly" in a pouch. Müllerian regression does not fully complete in approximately one third of all cases, resulting in Müllerian "remnants". Although rare, a few cases of women with CAIS and fully developed Müllerian structures have been reported. In one exceptional case, a 22-year-old with CAIS was found to have a normal cervix, uterus, and fallopian tubes. In an unrelated case, a fully developed uterus was found in a 22-year-old adult with CAIS.
Other subtle differences that have been reported include slightly longer limbs and larger hands and feet due to a proportionally greater stature than unaffected women, larger teeth, minimal or no acne, well developed breasts, and a greater incidence of meibomian gland dysfunction (i.e. dry eye syndromes and light sensitivity).
People with 46,XX testicular DSD have male external genitalia. They generally have small testes and may also have abnormalities such as undescended testes (cryptorchidism) or the urethra opening on the underside of the penis (hypospadias). A small number of affected people have external genitalia that do not look clearly male or clearly female (ambiguous genitalia). Affected children are typically raised as males and are likely to have a male gender identity.
All forms of androgen insensitivity are associated with infertility, though exceptions have been reported for both the mild and partial forms.
PAIS is associated with a 50% risk of germ cell malignancy when the testes are undescended. If the testes are located intrascrotally, there may still be significant risk of germ cell malignancy; studies have not yet been published to assess this risk. Some men with PAIS may experience sexual dysfunction including impotence and anejaculation. A few AR mutations that cause PAIS are also associated with prostate and breast cancers.
Vaginal hypoplasia, a relatively frequent finding in CAIS and some forms of PAIS, is associated with sexual difficulties including vaginal penetration difficulties and dyspareunia.
At least one study indicates that individuals with an intersex condition may be more prone to psychological difficulties, due at least in part to parental attitudes and behaviors, and concludes that preventative long-term psychological counseling for parents as well as for affected individuals should be initiated at the time of diagnosis.
Lifespan is not thought to be affected by AIS.
All forms of androgen insensitivity, including CAIS, are associated with infertility, though exceptions have been reported for both the mild and partial forms.
CAIS is associated with a decreased bone mineral density. Some have hypothesized that the decreased bone mineral density observed in women with CAIS is related to the timing of gonadectomy and inadequate estrogen supplementation. However, recent studies show that bone mineral density is similar whether gonadectomy occurs before or after puberty, and is decreased despite estrogen supplementation, leading some to hypothesize that the deficiency is directly attributable to the role of androgens in bone mineralization.
CAIS is also associated with an increased risk for gonadal tumors (e.g. germ cell malignancy) in adulthood if gonadectomy is not performed. The risk of malignant germ cell tumors in women with CAIS increases with age and has been estimated to be 3.6% at 25 years and 33% at 50 years. The incidence of gonadal tumors in childhood is thought to be relatively low; a recent review of the medical literature found that only three cases of malignant germ cell tumors in prepubescent girls have been reported in association with CAIS in the last 100 years. Some have estimated the incidence of germ cell malignancy to be as low as 0.8% before puberty.
Vaginal hypoplasia, a relatively frequent finding in CAIS and some forms of PAIS, is associated with sexual difficulties including vaginal penetration difficulties and dyspareunia.
At least one study indicates that individuals with an intersex condition may be more prone to psychological difficulties, due at least in part to parental attitudes and behaviors, and concludes that preventative long-term psychological counseling for parents as well as for affected individuals should be initiated at the time of diagnosis.
Lifespan is not thought to be affected by AIS.
The appearance of XX males can fall into one of three categories: 1) males that have normal internal and external genitalia, 2) males with external ambiguities, and 3) males that have both internal and external genital ambiguities (true hermaphrodites). External genital ambiguities can include hypospadias, micropenis, and clitoromegaly. On average, the appearance of XX males differs from that of an XY male in that they are smaller in height and weight. Most XX males have small testes, are sterile, and have an increase in maldescended testicles compared to XY males. Some XX male individuals have decreased amounts of body hair and decreased libido. Individuals with this condition sometimes have feminine characteristics, with varying degrees of gynecomastia but with no intra-abdominal Müllerian tissue. According to research at the University of Oklahoma health science centers, despite XX males exhibiting feminine characteristics, their behaviours are usually representative of masculinity in their culture.
Individuals with mild (or minimal) androgen insensitivity syndrome (grade 1 on the Quigley scale) are born phenotypically male, with fully masculinized genitalia; this category of androgen insensitivity is diagnosed when the degree of androgen insensitivity in an individual with a 46,XY karyotype is great enough to impair virilization or spermatogenesis, but is not great enough to impair normal male genital development. MAIS is the mildest and least known form of androgen insensitivity syndrome.
The existence of a variant of androgen insensitivity that solely affected spermatogenesis was theoretical at first. Cases of phenotypically normal males with isolated spermatogenic defect due to AR mutation were first detected as the result of male infertility evaluations. Until then, early evidence in support of the existence of MAIS was limited to cases involving a mild defect in virilization, although some of these early cases made allowances for some degree of impairment of genital masculinization, such as hypospadias or micropenis. It is estimated that 2-3% of infertile men have AR gene mutations.
Examples of MAIS phenotypes include isolated infertility (oligospermia or azoospermia), mild gynecomastia in young adulthood, decreased secondary terminal hair, high pitched voice, or minor hypospadias repair in childhood. The external male genitalia (penis, scrotum, and urethra) are otherwise normal in individuals with MAIS. Internal genitalia, including Wolffian structures (the epididymides, vasa deferentia, and seminal vesicles) and the prostate, is also normal, although the bitesticular volume of infertile men (both with and without MAIS) is diminished; male infertility is associated with reduced bitesticular volume, varicocele, retractile testes, low ejaculate volume, male accessory gland infections (MAGI), and mumps orchitis. The incidence of these features in infertile men with MAIS is similar to that of infertile men without MAIS. MAIS is not associated with Müllerian remnants.
Post-testicular factors decrease male fertility due to conditions that affect the male genital system after testicular sperm production and include defects of the genital tract as well as problems in ejaculation:
- Vas deferens obstruction
- Lack of Vas deferens, often related to genetic markers for Cystic Fibrosis
- Infection, e.g. prostatitis
- Ejaculatory duct obstruction
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a severe neurodegenerative syndrome that is associated with a particular mutation of the androgen receptor's polyglutamine tract called a trinucleotide repeat expansion. SBMA results when the length of the polyglutamine tract exceeds 40 repetitions.
Although technically a variant of MAIS, SBMA's presentation is not typical of androgen insensitivity; symptoms do not occur until adulthood and include neuromuscular defects as well as signs of androgen inaction. Neuromuscular symptoms include progressive proximal muscle weakness, atrophy, and fasciculations. Symptoms of androgen insensitivity experienced by men with SBMA are also progressive and include testicular atrophy, severe oligospermia or azoospermia, gynecomastia, and feminized skin changes despite elevated androgen levels. Disease onset, which usually affects the proximal musculature first, occurs in the third to fifth decades of life, and is often preceded by muscular cramps on exertion, tremor of the hands, and elevated muscle creatine kinase. SBMA is often misdiagnosed as amyotrophic lateral sclerosis (ALS) (also known as Lou Gehrig's disease).
The symptoms of SBMA are thought to be brought about by two simultaneous pathways involving the toxic misfolding of proteins and loss of AR functionality. The polyglutamine tract in affected pedigrees tends to increase in length over generations, a phenomenon known as "anticipation", leading to an increase in the severity of the disease as well as a decrease in the age of onset for each subsequent generation of a family affected by SBMA.
The symptoms of Leydig cell hypoplasia include pseudohermaphroditism (i.e., feminized, ambiguous, or relatively mildly underdeveloped (e.g., micropenis, severe hypospadias, and/or cryptorchidism (undescended testes)) external genitalia), a female gender identity or gender variance, hypergonadotropic hypogonadism (hypogonadism despite high levels of gonadotropins), delayed, impaired, or fully absent puberty with an associated reduction in or complete lack of development of secondary sexual characteristics (sexual infantilism), impaired fertility or complete sterility, tall stature (due to delayed epiphyseal closure), eunuchoid skeletal proportions, delayed or absent bone maturation, and osteoporosis.
The diagnosis of oligozoospermia is based on one low count in a semen analysis performed on two occasions. For many decades sperm concentrations of less than 20 million sperm/ml were considered low or oligospermic, recently, however, the WHO reassessed sperm criteria and established a lower reference point, less than 15 million sperm/ml, consistent with the 5th percentile for fertile men. Sperm concentrations fluctuate and oligospermia may be temporary or permanent.
Sources usually classify oligospermia in 3 classes:
- Mild: concentrations 10 million – 15 million sperm/mL
- Moderate: concentrations 5 million – 10 million sperm/mL
- Severe: concentrations less than 5 million sperm/mL
The diagnosis of oligozoospermia requires a work-up via semen analysis (listed in Male infertility).
At puberty, most affected individuals require treatment with the male sex hormone testosterone to induce development of male secondary sex characteristics such as facial hair and deepening of the voice (masculinization). Hormone treatment can also help prevent breast enlargement (gynecomastia). Adults with this disorder are usually shorter than average for males and are unable to have children (infertile).
Hypospadias presents as an abnormal location for the end of the urethra which is typically found on the distal end of the penis. It is generally diagnosed at birth from visual confirmation of the hallmark features. As well as an unusual location of the urethra, the prepuce (foreskin) is typically incomplete as well. The abnormal ‘hooded’ prepuce is what often draws attention to the condition but can occur separately to hypospadias.
The most common presentation of testicular cancer is a hard, painless lump which can be felt on one of the testis. It is either noticed by a clinician during a routine examination, or the patient themselves. Risk factors for TC include:
- Cryptorchidism
- Family history
- Previous testicular cancer
- Being white
The diagnosis is confirmed in different ways. An ultrasound scan can be used to diagnose to a 90-95% accuracy. Bloods can also be taken to look for elevated tumour markers which is also used to analyse the patient’s response to treatment. 80% of testicular cancer cases are from the 20-34 year old age range
Women with hypogonadism do not begin menstruating and it may affect their height and breast development. Onset in women after puberty causes cessation of menstruation, lowered libido, loss of body hair and hot flashes. In boys it causes impaired muscle and beard development and reduced height. In men it can cause reduced body hair and beard, enlarged breasts, loss of muscle, and sexual difficulties. A brain tumor (central hypogonadism) may involve headaches, impaired vision, milky discharge from the breast and symptoms caused by other hormone problems.
Follicle-stimulating hormone (FSH) insensitivity, or ovarian insensitivity to FSH in females, also referable to as ovarian follicle hypoplasia or granulosa cell hypoplasia in females, is a rare autosomal recessive genetic and endocrine syndrome affecting both females and males, with the former presenting with much greater severity of symptomatology. It is characterized by a resistance or complete insensitivity to the effects of follicle-stimulating hormone (FSH), a gonadotropin which is normally responsible for the stimulation of estrogen production by the ovaries in females and maintenance of fertility in both sexes. The condition manifests itself as hypergonadotropic hypogonadism (decreased or lack of production of sex steroids by the gonads despite high circulating levels of gonadotropins), reduced or absent puberty (lack of development of secondary sexual characteristics, resulting in sexual infantilism if left untreated), amenorrhea (lack of menstruation), and infertility in females, whereas males present merely with varying degrees of infertility and associated symptoms (e.g., decreased sperm production).
A related condition is luteinizing hormone (LH) insensitivity (termed Leydig cell hypoplasia when it occurs in males), which presents with similar symptoms to those of FSH insensitivity but with the symptoms in the respective sexes reversed (i.e., hypogonadism and sexual infantilism in males and merely problems with fertility in females); however, males also present with feminized or ambiguous genitalia (also known as pseudohermaphroditism), whereas ambiguous genitalia does not occur in females with FSH insensitivity. Despite their similar causes, LH insensitivity is considerably more common in comparison to FSH insensitivity.
Individuals with 5-ARD are born with male gonads, including testicles and Wolffian structures. They can have normal male external genitalia, ambiguous genitalia, or normal female genitalia, but usually tend towards a female appearance. As a consequence, they are often raised as girls, but usually have a male gender identity.
The development of the genital tubercle tissue (which by week 9 of a fetus' gestation becomes either a clitoris or a penis) tends towards a size qualifying it as an ambiguous macroclitoris/micropenis (large clitoris/small penis), and the urethra may attach to the phallus.
If the condition has not already been diagnosed, it usually becomes apparent at puberty around age twelve with primary amenorrhoea and virilization. This may include descending of the testes, hirsutism (facial/body hair considered normal in males - not to be confused with hypertrichosis), deepening of the voice, and enlargement of the clitoris into what would then be classed as a penis.
In adulthood, individuals do not experience male-pattern baldness. As DHT is a far more potent androgen than testosterone alone, virilization in those lacking DHT may be absent or reduced compared to males with functional 5-AR. It is hypothesized that rising testosterone levels at the start of puberty are able to generate sufficient levels of DHT either by the action of 5α-reductase type I (active in the adult liver, non-genital skin and some brain areas) or through the expression of low levels of 5α-reductase type II in the testes.
5-ARD is associated with an increased risk of cryptorchidism and testicular cancer.
Hypogonadism can involve just hormone production or just fertility, but most commonly involves both.
- Examples of hypogonadism that affect hormone production more than fertility are hypopituitarism and Kallmann syndrome; in both cases, fertility is reduced until hormones are replaced but can be achieved solely with hormone replacement.
- Examples of hypogonadism that affect fertility more than hormone production are Klinefelter syndrome and Kartagener syndrome.
Leydig cell hypoplasia (or aplasia) (LCH), also known as Leydig cell agenesis, is a rare autosomal recessive genetic and endocrine syndrome affecting an estimated 1 in 1,000,000 genetic males. It is characterized by an inability of the body to respond to luteinizing hormone (LH), a gonadotropin which is normally responsible for signaling Leydig cells of the testicles to produce testosterone and other androgen sex hormones. The condition manifests itself as pseudohermaphroditism (partially or fully underdeveloped genitalia), hypergonadotropic hypogonadism (decreased or lack of production of sex steroids by the gonads despite high circulating levels of gonadotropins), reduced or absent puberty (lack of development of secondary sexual characteristics, resulting in sexual infantilism if left untreated), and infertility.
Leydig cell hypoplasia does not occur in biological females as they do not have either Leydig cells or testicles. However, the cause of the condition in males, luteinizing hormone insensitivity, does affect females, and because LH plays a role in the female reproductive system, it can result in primary amenorrhea or oligomenorrhea (absent or reduced menstruation), infertility due to anovulation, and ovarian cysts.
A related condition is follicle-stimulating hormone (FSH) insensitivity, which presents with similar symptoms to those of Leydig cell hypoplasia but with the symptoms in the respective sexes reversed (i.e., hypogonadism and sexual infantilism in females and merely problems with fertility in males). Despite their similar causes, FSH insensitivity is considerably less common in comparison to LH insensitivity.
AIS is broken down into three classes based on phenotype: complete androgen insensitivity syndrome (CAIS), partial androgen insensitivity syndrome (PAIS), and mild androgen insensitivity syndrome (MAIS). A supplemental system of phenotypic grading that uses seven classes instead of the traditional three was proposed by pediatric endocrinologist Charmian A. Quigley et al. in 1995. The first six grades of the scale, grades 1 through 6, are differentiated by the degree of genital masculinization; grade 1 is indicated when the external genitalia is fully masculinized, grade 6 is indicated when the external genitalia is fully feminized, and grades 2 through 5 quantify four degrees of decreasingly masculinized genitalia that lie in the interim. Grade 7 is indistinguishable from grade 6 until puberty, and is thereafter differentiated by the presence of secondary terminal hair; grade 6 is indicated when secondary terminal hair is present, whereas grade 7 is indicated when it is absent. The Quigley scale can be used in conjunction with the traditional three classes of AIS to provide additional information regarding the degree of genital masculinization, and is particularly useful when the diagnosis is PAIS.
Androgen insensitivity syndrome (AIS) is an intersex condition in which there is a partial or complete inability of many cells in the affected genetic male to respond to androgenic hormones. This can prevent or impair the masculinization of male genitalia in the developing genetic male (chromosomal XY) fetus, as well as the development of male secondary sexual characteristics at puberty. Clinical phenotypes range from a normal male habitus with mild spermatogenic defect or reduced secondary terminal hair; to a full female habitus despite the presence of a Y-chromosome. Women (chromosomal XX) who are heterozygous for the AR gene have normal primary and secondary sexual characteristics; this female carrier will pass the affected AR gene to any child she has with 50% likelihood. AIS is the largest single entity that leads to 46,XY undermasculinized genitalia.
The androgen receptor (AR), which is defective due to a mutation in most of these syndromes, is a type of nuclear receptor that is activated by binding to either of the androgenic hormones (testosterone or dihydrotestosterone) in the cytoplasm, and then translocates into the nucleus where it binds to DNA, provided androgen response elements and coactivators are present. This combination functions as a transcription complex to turn on androgen gene expression. Thus the AR activates these genes to mediate the effects of androgens in the human body, including the development and maintenance of the male sexual phenotype and generalized anabolic effects. Over 400 AR mutations have been reported.
AIS is divided into three categories that are differentiated by the degree of genital masculinization: complete androgen insensitivity syndrome (CAIS) is indicated when the external genitalia are that of a normal female; mild androgen insensitivity syndrome (MAIS) is indicated when the external genitalia are that of a normal male, and partial androgen insensitivity syndrome (PAIS) is indicated when the external genitalia are partially, but not fully, masculinized.
Management of AIS is currently limited to symptomatic management; no method is currently available to correct the malfunctioning androgen receptor proteins produced by "AR" gene mutations. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, genetic counseling, and psychological counseling.