Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The signs and symptoms of malaria typically begin 8–25 days following infection; however, symptoms may occur later in those who have taken antimalarial medications as prevention. Initial manifestations of the disease—common to all malaria species—are similar to flu-like symptoms, and can resemble other conditions such as sepsis, gastroenteritis, and viral diseases. The presentation may include headache, fever, shivering, joint pain, vomiting, hemolytic anemia, jaundice, hemoglobin in the urine, retinal damage, and convulsions.
The classic symptom of malaria is paroxysm—a cyclical occurrence of sudden coldness followed by shivering and then fever and sweating, occurring every two days (tertian fever) in "P. vivax" and "P. ovale" infections, and every three days (quartan fever) for "P. malariae". "P. falciparum" infection can cause recurrent fever every 36–48 hours, or a less pronounced and almost continuous fever.
Severe malaria is usually caused by "P. falciparum" (often referred to as falciparum malaria). Symptoms of falciparum malaria arise 9–30 days after infection. Individuals with cerebral malaria frequently exhibit neurological symptoms, including abnormal posturing, nystagmus, conjugate gaze palsy (failure of the eyes to turn together in the same direction), opisthotonus, seizures, or coma.
Malaria has several serious complications. Among these is the development of respiratory distress, which occurs in up to 25% of adults and 40% of children with severe "P. falciparum" malaria. Possible causes include respiratory compensation of metabolic acidosis, noncardiogenic pulmonary oedema, concomitant pneumonia, and severe anaemia. Although rare in young children with severe malaria, acute respiratory distress syndrome occurs in 5–25% of adults and up to 29% of pregnant women. Coinfection of HIV with malaria increases mortality. Renal failure is a feature of blackwater fever, where hemoglobin from lysed red blood cells leaks into the urine.
Infection with "P. falciparum" may result in cerebral malaria, a form of severe malaria that involves encephalopathy. It is associated with retinal whitening, which may be a useful clinical sign in distinguishing malaria from other causes of fever. Enlarged spleen, enlarged liver or both of these, severe headache, low blood sugar, and hemoglobin in the urine with renal failure may occur. Complications may include spontaneous bleeding, coagulopathy, and shock.
Malaria in pregnant women is an important cause of stillbirths, infant mortality, abortion and low birth weight, particularly in "P. falciparum" infection, but also with "P. vivax".
Response to infection by "Leishmania donovani" varies a great deal, not only by the strength but also by the type of the patient's immune reaction. People with a history of infection by strains of leishmania that cause visceral leishmaniasis show a continuum of immune responses from protective to non-protective. Those who acquired protective immunity (skin test positive) without ever having visceral leishmaniasis have a strong type 1 CD4+ response to leishmania antigens. Antigen specific interferon-gamma and proliferation, as well as the ability to kill intracellular leishmania, are hallmarks of protective immunity. Because visceral leishmaniasis patients lack these responses to leishmania and other antigens, they usually die of secondary infections if left untreated. In addition, increased interleukin-10 secretion is characteristic of the disease. Addition of interleukin-12, anti-interleukin-10, or anti-interleukin-4 to peripheral blood mononuclear cells from acute patients sometimes increases interferon-gamma secretion and proliferation. Acute patient peripheral blood mononuclear cells include CD8+ T regulatory cells that decrease interferon-gamma secretion and proliferation responses to leishmania and other antigens and increase interleukin-10 secretion when added to autologous peripheral blood mononuclear cells harvested after successful treatment. Thus, the CD8+ T regulatory cells reproduce the immune response characteristic of visceral leishmaniasis. CD8+ T regulatory cells are also associated with post kala azar dermal leishmaniasis. Addition of interleukin-12 or interferon-gamma does not prevent CD8+ T regulatory activity. The dominance of type 1 CD4+ T cells in skin test positive adults maybe explained by their secretion of factors that inhibit and kill CD8+ T regulatory cells. Successfully treated patients rarely develop visceral leishmaniasis a second time. Their peripheral blood mononuclear cells show a mixed T1/T2 CD4+ and CD8+ T suppressor response but do have the ability to kill intracellular leishmania.
When people develop visceral leishmaniasis, the most typical symptoms are fever and the enlargement of the spleen, with enlargement of the liver sometimes being seen as well. The blackening of the skin that gave the disease its common name in India does not appear in most strains of the disease, and the other symptoms are very easy to mistake for those of malaria. Misdiagnosis is dangerous, as without proper treatment the mortality rate for kala-azar is close to 100%. "L. donovani" itself is not usually the direct cause of death in kala-azar sufferers, however. Pneumonia, tuberculosis, and dysentery are omnipresent in the depressed regions where leishmaniasis thrives, and, as with AIDS, it is these opportunistic infections that are more likely to kill, flaring up in a host whose immune system has been weakened by the "L. donovani" infection. Progress of the disease is extremely variable, taking anywhere from one to twenty weeks, but a typical duration for the Sudanese strain of the disease is narrower, between twelve and sixteen weeks.
Even with recovery, kala-azar does not always leave its hosts unmarked. Some time after successful treatment—generally a few months with African kala-azar, or as much as several years with the Indian strain—a secondary form of the disease may set in, called post kala-azar dermal leishmaniasis, or PKDL. This condition manifests first as small, measle-like skin lesions on the face, which gradually increase in size and spread over the body. Eventually the lesions may coalesce to form disfiguring, swollen structures resembling leprosy, and occasionally causing blindness if they spread to the eyes. (This disease is not the same as cutaneous leishmaniasis, a milder disease caused by another protozoan of the Leishmania genus which also causes skin lesions.)
Women experiencing PAM may exhibit normal symptoms of malaria, but may also be asymptomatic or present with more mild symptoms, including a lack of the characteristic fever. This may prevent a woman from seeking treatment despite the danger to herself and her unborn child.
Visceral leishmaniasis (VL), also known as kala-azar, black fever, and Dumdum fever, is the most severe form of leishmaniasis and, without proper diagnosis and treatment, is associated with high fatality. Leishmaniasis is a disease caused by protozoan parasites of the "Leishmania" genus.
The parasite migrates to the internal organs such as the liver, spleen (hence "visceral"), and bone marrow, and, if left untreated, will almost always result in the death of the host. Signs and symptoms include fever, weight loss, fatigue, anemia, and substantial swelling of the liver and spleen. Of particular concern, according to the World Health Organization (WHO), is the emerging problem of HIV/VL co-infection.
This disease is the second-largest parasitic killer in the world (after malaria), responsible for an estimated 200,000 to 400,000 infections each year worldwide.
Pregnancy-associated malaria (PAM) or placental malaria is a presentation of the common illness that is particularly life-threatening to both mother and developing fetus. PAM is caused primarily by infection with "Plasmodium falciparum", the most dangerous of the four species of malaria-causing parasites that infect humans. During pregnancy, a woman faces a much higher risk of contracting malaria and of associated complications. Prevention and treatment of malaria are essential components of prenatal care in areas where the parasite is endemic.
While the average adult citizen of an endemic region possesses some immunity to the parasite, pregnancy causes complications that leave the woman and fetus extremely vulnerable. The parasite interferes with transmission of vital substances through the fetal placenta, often resulting in stillbirth, spontaneous abortion, or dangerously low birth weight. The tragedy of malaria in developing countries receives abundant attention from the international health community, but until recently PAM and its unique complications were not adequately addressed.
Another primary condition, called Katayama fever, may also develop from infection with these worms, and it can be very difficult to recognize. Symptoms include fever, lethargy, the eruption of pale temporary bumps associated with severe itching (urticarial) rash, liver and spleen enlargement, and bronchospasm.
Acute schistosomiasis (Katayama fever) may occur weeks or months after the initial infection as a systemic reaction against migrating schistosomulae as they pass through the bloodstream through the lungs to the liver. Similarly to swimmer's itch, Katayama fever is more commonly seen in people with their first infection such as migrants and tourists. However it is seen in native residents of China infected with "S. japonicum". Symptoms include:
- Dry cough with changes on chest x-ray
- Fever
- Fatigue
- Muscle aches
- Malaise
- Abdominal pain
- Enlargement of both the liver and the spleen
The symptoms usually get better on their own but a small proportion of people have persistent weight loss, diarrhea, diffuse abdominal pain and rash.
The first potential reaction is an itchy, papular rash that results from cercariae penetrating the skin, often in a person's first infection. The round bumps are usually one to three centimeters across. Because people living in affected areas have often been repeatedly exposed, acute reactions are more common in tourists and migrants. The rash can occur between the first few hours and a week after exposure and lasts for several days. A similar, more severe reaction called "swimmer's itch" reaction can also be caused by cercariae from animal trematodes that often infect birds.
Neglected tropical diseases (NTDs) are a diverse group of tropical infections which are especially common in low-income populations in developing regions of Africa, Asia, and the Americas. They are caused by a variety of pathogens such as viruses, bacteria, protozoa and helminths. These diseases are contrasted with the big three diseases (HIV/AIDS, tuberculosis, and malaria), which generally receive greater treatment and research funding. In sub-Saharan Africa, the effect of these diseases as a group is comparable to malaria and tuberculosis. NTD co-infection can also make HIV/AIDS and tuberculosis more deadly.
In some cases, the treatments are relatively inexpensive. For example, the treatment for schistosomiasis is US$0.20 per child per year. Nevertheless, in 2010 it was estimated that control of neglected diseases would require funding of between US$2 billion and US$3 billion over the subsequent five to seven years. Some pharmaceutical companies have committed to donating all the drug therapies required, and mass drug administration (for example mass deworming) has been successfully accomplished in several countries. However, preventive measures are often more accessible in the developed world, but not universally available in poorer areas.
Within developed countries, neglected tropical diseases affect the very poorest in society. In the United States, there are up to 1.46 million families including 2.8 million children living on less than two dollars a day. In countries such as these, the burdens of neglected tropical diseases are often overshadowed by other public health issues. However, many of the same issues put populations at risk in developed as developing nations. For example, from poverty stem problems such as lack of adequate housing, thus exposing individuals to the vectors of these diseases.
Twenty neglected tropical diseases are prioritized by the World Health Organization (WHO), though other organizations define NTDs differently. Chromoblastomycosis and other deep mycoses, scabies and other ectoparasites and snakebite envenoming were added to the list in 2017. These diseases are common in 149 countries, affecting more than 1.4 billion people (including more than 500 million children) and costing developing economies billions of dollars every year. They resulted in 142,000 deaths in 2013—down from 204,000 deaths in 1990. Of these 20, two were targeted for eradication (dracunculiasis (guinea-worm disease) by 2015 and yaws by 2020), and four for elimination (blinding trachoma, human African trypanosomiasis, leprosy and lymphatic filariasis by 2020).
Acanthocheilonemiasis is a rare tropical infectious disease caused by a parasite known as "Acanthocheilonema perstans". It can cause skin rashes, abdominal and chest pains, muscle and joint pains, neurological disorders and skin lumps. It is mainly found in Africa. The parasite is transmitted through the bite of small flies. Studies show that there are elevated levels of white blood cells.
Acanthocheilonemiasis belongs to a group of parasitic diseases known as filarial disease (nematode), all of which are classified as Neglected Tropical Diseases. Filarial disease results when microfilariae, which are nematode larvae, reach the lymphatic system; microfilariae reside in the serous cavities of humans. They have a five-stage life cycle that includes birth to thousands of live microfilariae within the host (i.e. human body), and then translocation via blood meal to the dermis layer of the skin. It is here that microfilariae cause major symptoms, which are edema and thickening of the skin and underlying connective tissues. It can also cause skin rashes, abdominal and chest pains, muscle (myalgia) and joint pains, neurological disorders and skin lumps. In addition, it causes spleen and liver enlargement, which is called hepatosplenomegaly. Studies show elevated levels of leukocytes, or white blood cells, which is referred to as eosinophilia. It is mainly found in Africa. The parasite is transmitted through the bite of small flies ("A. coliroides").
There are no specific symptoms or signs of hookworm infection, but they give rise to a combination of intestinal inflammation and progressive iron-deficiency anemia and protein deficiency. Coughing, chest pain, wheezing, and fever will sometimes result from severe infection. Epigastric pains, indigestion, nausea, vomiting, constipation, and diarrhea can occur early or in later stages as well, although gastrointestinal symptoms tend to improve with time. Signs of advanced severe infection are those of anemia and protein deficiency, including emaciation, cardiac failure and abdominal distension with ascites.
Larval invasion of the skin (mostly in the Americas) can produce a skin disease called cutaneous larva migrans also known as "creeping eruption". The hosts of these worms are not human and the larvae can only penetrate the upper five layers of the skin, where they give rise to intense, local itching, usually on the foot or lower leg, known as "ground itch". This infection is due to larvae from the "A. Braziliense" hookworm. The larvae migrate in tortuous tunnels between the "stratum basale" and "stratum corneum" of the skin, causing serpiginous vesicular lesions. With advancing movement of the larvae, the rear portions of the lesions become dry and crusty. The lesions are typically intensely itchy.
The term "hookworm" is sometimes used to refer to hookworm infection. A hookworm is a type of parasitic worm (helminth).
Most people infected with the West Nile virus usually do not develop symptoms. However, some individuals can develop cases of severe fatigue, weakness, headaches, body aches, joint and muscle pain, vomiting, diarrhea, and rash, which can last for weeks or months. More serious symptoms have a greater risk of appearing in people over 60 years of age, or those suffering from cancer, diabetes, hypertension, and kidney disease.
Dengue fever is mostly characterized by high fever, headaches, joint pain, and rash. However, more severe instances can lead to hemorrhagic fever, internal bleeding, and breathing difficulty, which can be fatal.
Generally speaking, acanthocheilonemiasis does not show initial symptoms. However, if symptoms do arise, it is typically in individuals who are visiting highly infected areas rather than natives to those areas. A major common laboratory finding is an increase in specialized white blood cells, which is called eosinophilia.
Other symptoms include itchy skin, neurological symptoms, abdominal and chest pain, muscle pain, and swelling underneath the skin. If there are abnormally high levels of white blood cells, then a physical examination will most likely find an enlarged spleen or liver.
In certain scenarios, nematodes may physically lodge into the chest or abdomen, resulting in an inflammation. Diagnosis of this condition usually occurs via a blood smear examination under light microscopy.
Symptoms vary on severity, from mild unnoticeable symptoms to more common symptoms like fever, rash, headache, achy muscle and joints, and conjunctivitis. Symptoms can last several days to weeks, but death resulting from this infection is rare.
Tropical diseases are diseases that are prevalent in or unique to tropical and subtropical regions. The diseases are less prevalent in temperate climates, due in part to the occurrence of a cold season, which controls the insect population by forcing hibernation. However, many were present in northern Europe and northern America in the 17th and 18th centuries before modern understanding of disease causation. The initial impetus for tropical medicine was to protect the health of colonialists, notably in India under the British Raj. Insects such as mosquitoes and flies are by far the most common disease carrier, or vector. These insects may carry a parasite, bacterium or virus that is infectious to humans and animals. Most often disease is transmitted by an insect "bite", which causes transmission of the infectious agent through subcutaneous blood exchange. Vaccines are not available for most of the diseases listed here, and many do not have cures.
Human exploration of tropical rainforests, deforestation, rising immigration and increased international air travel and other tourism to tropical regions has led to an increased incidence of such diseases.
Half of all children and a quarter of previously healthy adults are asymptomatic with "Babesia" infection. When people do develop symptoms, the most common are fever and hemolytic anemia, symptoms that are similar to those of malaria. People with symptoms usually become ill 1 to 4 weeks after the bite, or 1 to 9 weeks after transfusion of contaminated blood products. A person infected with babesiosis gradually develops malaise and fatigue, followed by a fever. Hemolytic anemia, in which red blood cells are destroyed and removed from the blood, also develops. Chills, sweats, and thrombocytopenia are also common symptoms. Symptoms may last from several days to several months.
Less common symptoms and physical exam findings of mild-to-moderate babesiosis:
In more severe cases, symptoms similar to malaria occur, with fevers up to 40.5 °C (105 °F), shaking chills, and severe anemia (hemolytic anemia). Organ failure may follow, including adult respiratory distress syndrome. Severe cases occur mostly in people who have had a splenectomy. Severe cases are also more likely to occur in the very young, very old, and persons with immunodeficiency, such as HIV/AIDS patients.
A reported increase in human babesiosis diagnoses in the 2000s is thought to be caused by more widespread testing and higher numbers of people with immunodeficiencies coming in contact with ticks, the disease vector. Little is known about the occurrence of "Babesia" species in malaria-endemic areas, where "Babesia" can easily be misdiagnosed as "Plasmodium". Human patients with repeat babesiosis infection may exhibit premunity.
Protozoan infections are parasitic diseases caused by organisms formerly classified in the Kingdom Protozoa. They include organisms classified in Amoebozoa, Excavata, and Chromalveolata.
Examples include "Entamoeba histolytica", "Plasmodium" (some of which cause malaria), and "Giardia lamblia". "Trypanosoma brucei", transmitted by the tsetse fly and the cause of African sleeping sickness, is another example.
The species traditionally collectively termed "protozoa" are not closely related to each other, and have only superficial similarities (eukaryotic, unicellular, motile, though with exceptions). The terms "protozoa" (and protist) are usually discouraged in the modern biosciences. However, this terminology is still encountered in medicine. This is partially because of the conservative character of medical classification, and partially due to the necessity of making identifications of organisms based upon appearances and not upon DNA.
Protozoan infections in animals may be caused by organisms in the sub-class Coccidia (disease: Coccidiosis) and species in the genus "Besnoitia" (disease: Besnoitiosis).
Several pathogenic protozoans appear to be capable of sexual processes involving meiosis (or at least a modified form of meiosis). Included among these protozoans are "Plasmodium falciparum" (malaria), "Toxoplasma gondii" (toxoplasmosis), "Leishmania" species (leishmaniases), "Trypanosoma brucei" (African sleeping sickness), "Trypanosoma cruzi" (Chagas disease) and "Giardia intestinalis" (giardiasis).
Diseases of poverty is a term sometimes used to collectively describe diseases, disabilities, and health conditions that are more prevalent among the poor than among wealthier people. In many cases poverty is considered the leading risk factor or determinant for such diseases, and in some cases the diseases themselves are identified as barriers to economic development that would end poverty. Diseases of poverty are often co-morbid and ubiquitous with malnutrition.
These diseases triggered in part by poverty are in contrast to so-called "diseases of affluence", which are diseases thought to be a result of increasing wealth in a society.
Light infestations (<100 worms) frequently have no symptoms. Heavier infestations, especially in small children, can present gastrointestinal problems including abdominal pain and distension, bloody or mucus-filled diarrhea, and tenesmus (feeling of incomplete defecation, generally accompanied by involuntary straining). Mechanical damage to the intestinal mucosa may occur, as well as toxic or inflammatory damage to the intestines of the host. While appendicitis may be brought on by damage and edema of the adjacent tissue, if there are large numbers of worms or larvae present, it has been suggested that the embedding of the worms into the ileocecal region may also make the host susceptible to bacterial infection. A severe infection with high numbers of embedded worms in the rectum leads to edema, which can cause rectal prolapse, although this is typically only seen in small children. The prolapsed, inflamed and edematous rectal tissue may even show visible worms.
Growth retardation, weight loss, nutritional deficiencies, and anemia (due to long-standing blood loss) are also characteristic of infection, and these symptoms are more prevalent and severe in children. It does not commonly cause eosinophilia.
Coinfection of "T. trichiura" with other parasites is common and with larger worm burdens can cause both exacerbation of dangerous trichuriasis symptoms such as massive gastrointestinal bleeding (shown to be especially dramatic with coinfection with "Salmonella typhi") and exacerbation of symptoms and pathogenesis of the other parasitic infection (as is typical with coinfection with "Schistosoma mansoni", in which higher worm burden and liver egg burden is common). Parasitic coinfection with HIV/AIDS, tuberculosis, and malaria is also common, especially in Sub-saharan Africa, and helminth coinfection adversely affects the natural history and progression of HIV/AIDS, tuberculosis, and malaria and can increase clinical malaria severity. In a study performed in Senegal, infections of soil-transmitted helminths like "T. trichiura" (as well as schistosome infections independently) showed enhanced risk and increased the incidence of malaria.
Heavy infestations may have bloody diarrhea. Long-standing blood loss may lead to iron-deficiency anemia. Vitamin A deficiency may also result due to infection.
Avian malaria is a parasitic disease of birds, caused by parasite species belonging to the genera "Plasmodium" and "Hemoproteus" (phylum Apicomplexa, class Haemosporidia, family Plasmoiidae). The disease is transmitted by a dipteran vector including mosquitoes in the case of "Plasmodium" parasites and biting midges for "Hemoproteus." The range of symptoms and effects of the parasite on its bird hosts is very wide, from asymptomatic cases to drastic population declines due to the disease, as is the case of the Hawaiian honeycreepers. The diversity of parasites is large, as it is estimated that there are approximately as many parasites as there are species of hosts. Co-speciation and host switching events have contributed to the broad range of hosts that these parasites can infect, causing avian malaria to be a widespread global disease, found everywhere except Antarctica.
Babesiosis is a malaria-like parasitic disease caused by infection with "Babesia", a genus of Apicomplexa. Human babesiosis is an uncommon but emerging disease in the Northeastern and Midwestern United States and parts of Europe, and sporadic throughout the rest of the world. It occurs in warm weather. Ticks transmit the human strain of babesiosis, so it often presents with other tick-borne illnesses such as Lyme disease. After trypanosomes, "Babesia" is thought to be the second-most common blood parasite of mammals, and they can have a major impact on health of domestic animals in areas without severe winters. In cattle, a major host, the disease is known as Texas cattle fever, redwater, or piroplasmosis.
Avian malaria is most notably caused by Plasmodium relictum, a protist that infects birds in all parts of the world apart from Antarctica. There are several other species of "Plasmodium" that infect birds, such as "Plasmodium anasum" and "Plasmodium gallinaceum", but these are of less importance except, in occasional cases, for the poultry industry. The disease is found worldwide, with important exceptions. Usually, it does not kill birds. However, in areas where avian malaria is newly introduced, such as the islands of Hawaiʻi, it can be devastating to birds that have lost evolutionary resistance over time.
Classically, the course of untreated typhoid fever is divided into four distinct stages, each lasting about a week. Over the course of these stages, the patient becomes exhausted and emaciated.
- In the first week, the body temperature rises slowly, and fever fluctuations are seen with relative bradycardia (Faget sign), malaise, headache, and cough. A bloody nose (epistaxis) is seen in a quarter of cases, and abdominal pain is also possible. A decrease in the number of circulating white blood cells (leukopenia) occurs with eosinopenia and relative lymphocytosis; blood cultures are positive for "Salmonella" Typhi or "S. paratyphi". The Widal test is usually negative in the first week.
- In the second week, the person is often too tired to get up, with high fever in plateau around and bradycardia (sphygmothermic dissociation or Faget sign), classically with a dicrotic pulse wave. Delirium is frequent, often calm, but sometimes agitated. This delirium gives to typhoid the nickname of "nervous fever". Rose spots appear on the lower chest and abdomen in around a third of patients. Rhonchi are heard in lung bases.
- The abdomen is distended and painful in the right lower quadrant, where borborygmi can be heard. Diarrhea can occur in this stage: six to eight stools in a day, green, comparable to pea soup, with a characteristic smell. However, constipation is also frequent. The spleen and liver are enlarged (hepatosplenomegaly) and tender, and liver transaminases are elevated. The Widal test is strongly positive, with antiO and antiH antibodies. Blood cultures are sometimes still positive at this stage.
- (The major symptom of this fever is that the fever usually rises in the afternoon up to the first and second week.)
- In the third week of typhoid fever, a number of complications can occur:
- Intestinal haemorrhage due to bleeding in congested Peyer's patches; this can be very serious, but is usually not fatal.
- Intestinal perforation in the distal ileum: this is a very serious complication and is frequently fatal. It may occur without alarming symptoms until septicaemia or diffuse peritonitis sets in.
- Encephalitis
- Respiratory diseases such as pneumonia and acute bronchitis
- Neuropsychiatric symptoms (described as "muttering delirium" or "coma vigil"), with picking at bedclothes or imaginary objects.
- Metastatic abscesses, cholecystitis, endocarditis, and osteitis
- The fever is still very high and oscillates very little over 24 hours. Dehydration ensues, and the patient is delirious (typhoid state). One-third of affected individuals develop a macular rash on the trunk.
- Platelet count goes down slowly and risk of bleeding rises.
- By the end of third week, the fever starts subsiding
There is some debate among the WHO, CDC, and infectious disease experts over which diseases are classified as neglected tropical diseases. Feasey, a researcher in neglected tropical diseases, notes 13 neglected tropical diseases: ascariasis, Buruli ulcer, Chagas disease, dracunculiasis, hookworm infection, human African trypanosomiasis, Leishmaniasis, leprosy, lymphatic filariasis, onchocerciasis, schistosomiasis, trachoma, and trichuriasis. Fenwick recognizes 12 "core" neglected tropical diseases: ascariasis, Buruli ulcer, Chagas disease, dracunculiasis, human African trypanosomiasis, Leishmaniasis, leprosy, lymphatic filariasis, onchocerciasis, schistosomiasis, trachoma, and trichuriasis.
These diseases result from four different classes of causative pathogens: (i) protozoa (for Chagas disease, human African trypanosomiasis, leishmaniases); (ii) bacteria (for Buruli ulcer, leprosy, trachoma, yaws), (iii) helminths or metazoan worms (for cysticercosis/taeniasis, dracunculiasis, echinococcosis, foodborne trematodiases, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiasis); and (iv) viruses (dengue and chikungunya, rabies).
The World Health Organization recognizes the seventeen diseases below as neglected tropical diseases.