Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The following characteristics suggest the possibility of a diagnosis of MODY in hyperglycemic and diabetic patients:
- Mild to moderate hyperglycemia (typically 130–250 mg/dl, or 7–14 mmol/l) discovered before 30 years of age. However, anyone under 50 can develop MODY.
- A first-degree relative with a similar degree of diabetes.
- Absence of positive antibodies or other autoimmunity (e.g., thyroiditis) in patient and family. However, Urbanova et al. found that about one quarter of Central European MODY patients are positive for islet cell autoantibodies (GADA and IA2A). Their expression is transient but highly prevalent. The autoantibodies were found in patients with delayed diabetes onset, and in times of insufficient diabetes control. The islet cell autoantibodies are absent in MODY in at least some populations (Japanese, Britons).
- Persistence of a low insulin requirement (e.g., less than 0.5 u/kg/day) past the usual "honeymoon" period.
- Absence of obesity (although overweight or obese people can get MODY) or other problems associated with type 2 diabetes or metabolic syndrome (e.g., hypertension, hyperlipidemia, polycystic ovary syndrome).
- Insulin resistance very rarely happens.
- Cystic kidney disease in patient or close relatives.
- Non-transient neonatal diabetes, or apparent type 1 diabetes with onset before six months of age.
- Liver adenoma or hepatocellular carcinoma in MODY type 3
- Renal cysts, rudimentary or bicornuate uterus, vaginal aplasia, absence of the vas deferens, epidymal cysts in MODY type 5
The diagnosis of MODY is confirmed by specific gene testing available through commercial laboratories.
Currently, MODY is the final diagnosis in 1%–2% of people initially diagnosed with diabetes. The prevalence is 70–110 per million population. 50% of first-degree relatives will inherit the same mutation, giving them a greater than 95% lifetime risk of developing MODY themselves. For this reason, correct diagnosis of this condition is important. Typically patients present with a strong family history of diabetes (any type) and the onset of symptoms is in the second to fifth decade.
There are two general types of clinical presentation.
- Some forms of MODY produce significant hyperglycemia and the typical signs and symptoms of diabetes: increased thirst and urination (polydipsia and polyuria).
- In contrast, many people with MODY have no signs or symptoms and are diagnosed either by accident, when a high glucose is discovered during testing for other reasons, or screening of relatives of a person discovered to have diabetes. Discovery of mild hyperglycemia during a routine glucose tolerance test for pregnancy is particularly characteristic.
MODY cases may make up as many as 5% of presumed type 1 and type 2 diabetes cases in a large clinic population. While the goals of diabetes management are the same no matter what type, there are two primary advantages of confirming a diagnosis of MODY.
- Insulin may not be necessary and it may be possible to switch a person from insulin injections to oral agents without loss of glycemic control.
- It may prompt screening of relatives and so help identify other cases in family members.
As it occurs infrequently, many cases of MODY are initially assumed to be more common forms of diabetes: type 1 if the patient is young and not overweight, type 2 if the patient is overweight, or gestational diabetes if the patient is pregnant. Standard diabetes treatments (insulin for type 1 and gestational diabetes, and oral hypoglycemic agents for type 2) are often initiated before the doctor suspects a more unusual form of diabetes.
MODY 1 is a form of maturity onset diabetes of the young.
MODY 1 is due to a loss-of-function mutation in the gene on chromosome 20. This gene codes for HNF4-α protein also known as transcription factor 14 (TCF14). HNF4α controls function of HNF1α (see MODY 3; ) and perhaps HNF1β (MODY 5) as well. This transcription network plays a role in the early development of the pancreas, liver, and intestines. In the pancreas these genes influence expression of, among others, the genes for insulin, the principal glucose transporter (GLUT2), and several proteins involved in glucose and mitochondrial metabolism.
Although pancreatic beta cells produce adequate insulin in infancy, the capacity for insulin production declines thereafter. Diabetes (persistent hyperglycemia) typically develops by early adult years, but may not appear until later decades. The degree of insulin deficiency is slowly progressive. Many patients with MODY 1 are treated with sulfonylureas for years before insulin is required.
Liver effects are subtle and not clinically significant. Many people with this condition have low levels of triglycerides, lipoprotein(a), apolipoproteins AII and CIII.
Mutations in the alternative promoter of HNF4A are linked to development of type 2 diabetes.
MODY 3 is a form of maturity onset diabetes of the young.
MODY 3 (also known as HNF1A-MODY) is caused by mutations of the HNF1-alpha; gene, a homeobox gene on chromosome 12. This is the most common type of MODY in populations with European ancestry, accounting for about 70% of all cases in Europe. HNF1α is a transcription factor (also known as transcription factor 1, TCF1) that is thought to control a regulatory network (including, among other genes, HNF1α) important for differentiation of beta cells. Mutations of this gene lead to reduced beta cell mass or impaired function. MODY 1 and MODY 3 diabetes are clinically similar. About 70% of people develop this type of diabetes by age 25 years, but it occurs at much later ages in a few. This type of diabetes can often be treated with sulfonylureas with excellent results for decades. However, the loss of insulin secretory capacity is slowly progressive and most eventually need insulin.
This is the form of MODY which can most resemble ordinary type 1 diabetes, and one of the incentives for diagnosing it is that insulin may be discontinued or deferred in favor of oral sulfonylureas. Some people treated with insulin for years due to a presumption of type 1 diabetes have been able to switch to pills and discontinue injections. Long-term diabetic complications can occur if the glucose is not adequately controlled.
High-sensitivity measurements of CRP may help to distinguish between HNF1A-MODY and other forms of diabetes
MODY 2 is a form of maturity onset diabetes of the young.
MODY 2 is due to any of several mutations in the "GCK" gene on chromosome 7 for glucokinase. Glucokinase serves as the glucose sensor for the pancreatic beta cell. Normal glucokinase triggers insulin secretion as the glucose exceeds about 90 mg/dl (5 mM). These loss-of-function mutations result in a glucokinase molecule that is less sensitive or less responsive to rising levels of glucose. The beta cells in MODY 2 have a normal ability to make and secrete insulin, but do so only above an abnormally high threshold (e.g., 126–144 mg/dl, or 7-8 mM). This produces a chronic, mild increase in blood sugar, which is usually asymptomatic. It is usually detected by accidental discovery of mildly elevated blood sugar (e.g., during pregnancy screening). An oral glucose tolerance test is much less abnormal than would be expected from the impaired (elevated) fasting blood sugar, since insulin secretion is usually normal once the glucose has exceeded the threshold for that specific variant of the glucokinase enzyme.
The degree of blood sugar elevation does not worsen rapidly with age, and long-term diabetic complications are rare. In healthy children and adults, a high blood sugar level can be avoided by a healthy diet and exercise, primarily avoiding large amounts of carbohydrates. However, as people who have MODY2 enter their 50's and 60's, even though they continue to eat a healthy diet and exercise, they sometimes are unable to control a high blood sugar level with these measures. In these cases, many medicines for type II diabetes mellitus are not effective, because MODY2 does not cause insulin resistance. Repaglinide (Prandin) can help the body regulate the amount of glucose in the blood by stimulating the pancreas to release insulin before meals. In some cases, the baseline glucose levels are too high as well and insulin is required.
MODY2 is an autosomal dominant condition. Autosomal dominance refers to a single, abnormal gene on one of the first 22 nonsex chromosomes from either parent which can cause an autosomal disorder. Dominant inheritance means an abnormal gene from one parent is capable of causing disease, even though the matching gene from the other parent is normal. The abnormal gene "dominates" the pair of genes. If just one parent has a dominant gene defect, each child has a 50% chance of inheriting the disorder.
This type of MODY demonstrates the common circulation but complex interplay between maternal and fetal metabolism and hormone signals in the determination of fetal size. A small number of infants will have a new mutation not present in their mothers. If the mother is affected and the fetus is not, the maternal glucose will be somewhat high and the normal pancreas of the fetus will generate more insulin to compensate, resulting in a large infant. If the fetus is affected but mother is not, glucoses will be normal and fetal insulin production will be low, resulting in intrauterine growth retardation. Finally, if both mother and fetus have the disease, the two defects will offset each other and fetal size will be unaffected.
When both "GCK" genes are affected the diabetes appears earlier and the hyperglycemia is more severe. A form of permanent neonatal diabetes has been caused by homozygous mutations in the GCK gene.
The classic symptoms of diabetes are polyuria (frequent urination), polydipsia (increased thirst), polyphagia (increased hunger), and weight loss. Other symptoms that are commonly present at diagnosis include a history of blurred vision, itchiness, peripheral neuropathy, recurrent vaginal infections, and fatigue. Many people, however, have no symptoms during the first few years and are diagnosed on routine testing. A small number of people with type 2 diabetes mellitus can develop a hyperosmolar hyperglycemic state (a condition of very high blood sugar associated with a decreased level of consciousness and low blood pressure).
The symptoms of latent autoimmune diabetes of adults are similar to those of other forms of diabetes: polydipsia (excessive thirst and drinking), polyuria (excessive urination), and often blurred vision. Compared to juvenile type 1 diabetes, the symptoms develop comparatively slowly, over a period of at least six months.
It is estimated that more than 50% of persons diagnosed as having non-obesity-related type 2 diabetes may actually have LADA. Glutamic acid decarboxylase autoantibody (GADA), islet cell autoantibody (ICA), insulinoma-associated (IA-2) autoantibody, and zinc transporter autoantibody (ZnT8) testing should be performed on all adults who are not obese who are diagnosed with diabetes. However, some overweight patients are misdiagnosed with type 2 due to their weight. Moreover, it is now becoming evident that autoimmune diabetes may be highly underdiagnosed in many individuals who have diabetes, and that the body mass index levels may have rather limited use in connections with latent autoimmune diabetes.
Persons with LADA typically have low, although sometimes moderate, levels of C-peptide as the disease progresses. Those with insulin resistance or type 2 diabetes are more likely to have high levels of C-peptide due to an over production of insulin.
Diabetes mellitus type 2 (also known as type 2 diabetes) is a long-term metabolic disorder that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. Common symptoms include increased thirst, frequent urination, and unexplained weight loss. Symptoms may also include increased hunger, feeling tired, and sores that do not heal. Often symptoms come on slowly. Long-term complications from high blood sugar include heart disease, strokes, diabetic retinopathy which can result in blindness, kidney failure, and poor blood flow in the limbs which may lead to amputations. The sudden onset of hyperosmolar hyperglycemic state may occur; however, ketoacidosis is uncommon.
Type 2 diabetes primarily occurs as a result of obesity and lack of exercise. Some people are more genetically at risk than others. Type 2 diabetes makes up about 90% of cases of diabetes, with the other 10% due primarily to diabetes mellitus type 1 and gestational diabetes. In diabetes mellitus type 1 there is a lower total level of insulin to control blood glucose, due to an autoimmune induced loss of insulin-producing beta cells in the pancreas. Diagnosis of diabetes is by blood tests such as fasting plasma glucose, oral glucose tolerance test, or glycated hemoglobin (A1C).
Type 2 diabetes is partly preventable by staying a normal weight, exercising regularly, and eating properly. Treatment involves exercise and dietary changes. If blood sugar levels are not adequately lowered, the medication metformin is typically recommended. Many people may eventually also require insulin injections. In those on insulin, routinely checking blood sugar levels is advised; however, this may not be needed in those taking pills. Bariatric surgery often improves diabetes in those who are obese.
Rates of type 2 diabetes have increased markedly since 1960 in parallel with obesity. As of 2015 there were approximately 392 million people diagnosed with the disease compared to around 30 million in 1985. Typically it begins in middle or older age, although rates of type 2 diabetes are increasing in young people. Type 2 diabetes is associated with a ten-year-shorter life expectancy. Diabetes was one of the first diseases described. The importance of insulin in the disease was determined in the 1920s.
The classical symptoms of type 1 diabetes include: polyuria (excessive urination), polydipsia (increased thirst), dry mouth, polyphagia (increased hunger), fatigue, and weight loss.
Many type 1 diabetics are diagnosed when they present with diabetic ketoacidosis. The signs and symptoms of diabetic ketoacidosis include dry skin, rapid deep breathing, drowsiness, increased thirst, frequent urination, abdominal pain, and vomiting.
About 12 percent of people with type 1 diabetes have clinical depression.
About 6 percent of people with type 1 diabetes have celiac disease, but in most cases there are no digestive symptoms or are mistakenly attributed to poor control of diabetes, gastroparesis or diabetic neuropathy. In most cases, celiac disease is diagnosed after onset of type 1 diabetes. The association of celiac disease with type 1 diabetes increases the risk of complications, such as retinopathy and mortality. This association can be explained by shared genetic factors, and inflammation or nutritional deficiencies caused by untreated celiac disease, even if type 1 diabetes is diagnosed first.
Some people with type 1 diabetes experience dramatic and recurrent swings in glucose levels, often occurring for no apparent reason; this is called "unstable diabetes" or "labile diabetes", and sometimes "brittle diabetes", although this term is no longer used. The results of such swings can be irregular and unpredictable hyperglycemias, sometimes involving ketoacidosis, and sometimes serious hypoglycemias. Brittle diabetes occurs no more frequently than in 1% to 2% of diabetics.
MODY 4 is a form of maturity onset diabetes of the young.
MODY 4 arises from mutations of the PDX1 homeobox gene on chromosome 13. Pdx-1 is a transcription factor vital to the development of the embryonic pancreas. Even in adults it continues to play a role in the regulation and expression of genes for insulin, GLUT2, glucokinase, and somatostatin.
MODY 4 is so rare that only a single family has been well-studied. A child born with pancreatic agenesis (absence of the pancreas) was found to be homozygous for Pdx-1 mutations. A number of older relatives who were heterozygous had mild hyperglycemia or diabetes. None were severely insulin-deficient and all were controlled with either diet or oral hypoglycemic agents.
Low blood sugar is common in persons with type 1 and type 2 DM. Most cases are mild and are not considered medical emergencies. Effects can range from feelings of unease, sweating, trembling, and increased appetite in mild cases to more serious issues such as confusion, changes in behavior such as aggressiveness, seizures, unconsciousness, and (rarely) permanent brain damage or death in severe cases. Moderate hypoglycemia may easily be mistaken for drunkenness; rapid breathing and sweating, cold, pale skin are characteristic of hypoglycemia but not definitive. Mild to moderate cases are self-treated by eating or drinking something high in sugar. Severe cases can lead to unconsciousness and must be treated with intravenous glucose or injections with glucagon.
People (usually with type 1 DM) may also experience episodes of diabetic ketoacidosis, a metabolic disturbance characterized by nausea, vomiting and abdominal pain, the smell of acetone on the breath, deep breathing known as Kussmaul breathing, and in severe cases a decreased level of consciousness.
A rare but equally severe possibility is hyperosmolar hyperglycemic state, which is more common in type 2 DM and is mainly the result of dehydration.
The classic symptoms of untreated diabetes are weight loss, polyuria (increased urination), polydipsia (increased thirst), and polyphagia (increased hunger). Symptoms may develop rapidly (weeks or months) in type 1 DM, while they usually develop much more slowly and may be subtle or absent in type 2 DM.
Several other signs and symptoms can mark the onset of diabetes although they are not specific to the disease. In addition to the known ones above, they include blurry vision, headache, fatigue, slow healing of cuts, and itchy skin. Prolonged high blood glucose can cause glucose absorption in the lens of the eye, which leads to changes in its shape, resulting in vision changes. A number of skin rashes that can occur in diabetes are collectively known as diabetic dermadromes.
Diabetes mellitus type 1 (also known as type 1 diabetes) is a form of diabetes mellitus in which not enough insulin is produced. This results in high blood sugar levels in the body. The classical symptoms are frequent urination, increased thirst, increased hunger, and weight loss. Additional symptoms may include blurry vision, feeling tired, and poor healing. Symptoms typically develop over a short period of time.
The cause of type 1 diabetes is unknown. However, it is believed to involve a combination of genetic and environmental factors. Risk factors include having a family member with the condition. The underlying mechanism involves an autoimmune destruction of the insulin-producing beta cells in the pancreas. Diabetes is diagnosed by testing the level of sugar or A1C in the blood. Type 1 diabetes can be distinguished from type 2 by testing for the presence of autoantibodies.
There is no known way to prevent type 1 diabetes. Treatment with insulin is required for survival. Insulin therapy is usually given by injection just under the skin but can also be delivered by an insulin pump. A diabetic diet and exercise are an important part of management. Untreated, diabetes can cause many complications. Complications of relatively rapid onset include diabetic ketoacidosis and nonketotic hyperosmolar coma. Long-term complications include heart disease, stroke, kidney failure, foot ulcers and damage to the eyes. Furthermore, complications may arise from low blood sugar caused by excessive dosing of insulin.
Type 1 diabetes makes up an estimated 5–10% of all diabetes cases. The number of people affected globally is unknown, although it is estimated that about 80,000 children develop the disease each year. Within the United States the number of people affected is estimated at one to three million. Rates of disease vary widely with approximately 1 new case per 100,000 per year in East Asia and Latin America and around 30 new cases per 100,000 per year in Scandinavia and Kuwait. It typically begins in children and young adults.
MODY 6 is a form of maturity onset diabetes of the young.
MODY 6 arises from mutations of the gene for the transcription factor referred to as neurogenic differentiation 1. The gene is on chromosome 2 in a region of the p arm known as IDDM7 because it includes genes affecting susceptibility to type 1 diabetes. NeuroD1 promotes transcription of the insulin gene as well as some genes involved in formation of beta cells and parts of the nervous system.
This is also one of the rarer forms of MODY. Only 3 kindreds with mutations causing MODY6 have been identified so far. In both, some of the members had more typical type 2 diabetes rather than MODY, and the reasons for the difference of expression have not been worked out. Most of the family members with diabetes were diagnosed after age 40, but a few required insulin for blood sugar control.
Renal cysts and diabetes syndrome (RCAD), also known as MODY 5, is a form of maturity onset diabetes of the young.
HNF1β-related MODY is one of the less common forms of MODY, with some distinctive clinical features, including atrophy of the pancreas and several forms of renal disease. HNF1β, also known as transcription factor 2 (TCF2), is involved in early stages of embryonic development of several organs, including the pancreas, where it contributes to differentiation of pancreatic endocrine Ngn3 cell progenitors from non-endocrine embryonic duct cells. The gene is on chromosome 17q.
The degree of insulin deficiency is variable. Diabetes can develop from infancy through middle adult life, and some family members who carry the gene remain free of diabetes into later adult life. Most of those who develop diabetes show atrophy of the entire pancreas, with mild or subclincal deficiency of exocrine as well as endocrine function.
The non-pancreatic manifestations are even more variable. Kidney and genitourinary malformation and diseases may occur, but inconsistently even within a family, and the specific conditions include a range of apparently unrelated anomalies and processes. The most common genitourinary condition is cystic kidney disease, but there are many varieties even of this. Renal effects begin with structural alterations (small kidneys, renal cysts, anomalies of the renal pelvis and calices), but a significant number develop slowly progressive renal failure associated with chronic cystic disease of the kidneys. In some cases, renal cysts may be detected in utero. Kidney disease may develop before or after hyperglycemia, and a significant number of people with MODY5 are discovered in renal clinics.
With or without kidney disease, some people with forms of HNF1β have had various minor or major anomalies of the reproductive system. Male defects have included epididymal cysts, agenesis of the vas deferens, or infertility due to abnormal spermatozoa. Affected women have been found to have vaginal agenesis, hypoplastic, or bicornuate uterus.
Liver enzyme elevations are common, but clinically significant liver disease is not. Hyperuricaemia and early onset gout have occurred.
Inborn errors of carbohydrate metabolism are inborn error of metabolism that affect the catabolism and anabolism of carbohydrates.
An example is lactose intolerance.
Carbohydrates account for a major portion of the human diet. These carbohydrates are composed of three principal monosaccharides: glucose, fructose and galactose; in addition glycogen is the storage form of carbohydrates in humans. The failure to effectively use these molecules accounts for the majority of the inborn errors of human carbohydrates metabolism.
In undiagnosed and untreated children, the accumulation of precursor metabolites due to the deficient activity of galactose 1-phosphate uridylyltransferase (GALT) can lead to feeding problems, failure to thrive, liver damage, bleeding, and infections. The first presenting symptom in an infant is often prolonged jaundice. Without intervention in the form of galactose restriction, infants can develop hyperammonemia and sepsis, possibly leading to shock. The accumulation of galactitol and subsequent osmotic swelling can lead to cataracts which are similar to those seen in galactokinase deficiency. Long-term consequences of continued galactose intake can include developmental delay, developmental verbal dyspraxia, and motor abnormalities. Galactosemic females frequently suffer from ovarian failure, regardless of treatment in the form of galactose restriction.
Hyperparathyroidism is present in ≥ 90% of patients. Asymptomatic hypercalcemia is the most common manifestation: about 25% of patients have evidence of nephrolithiasis or nephrocalcinosis. In contrast to sporadic cases of hyperparathyroidism, diffuse hyperplasia or multiple adenomas are more common than solitary adenomas.
Galactose-1-phosphate uridylyltransferase deficiency, also called galactosemia type 1, classic galactosemia or GALT deficiency, is the most common type of galactosemia, an inborn error of galactose metabolism, caused by a deficiency of the enzyme galactose-1-phosphate uridylyltransferase. It is an autosomal recessive metabolic disorder that can cause liver disease and death if untreated. Treatment of galactosemia is most successful if initiated early and includes dietary restriction of lactose intake. Because early intervention is key, galactosemia is included in newborn screening programs in many areas. On initial screening, which often involves measuring the concentration of galactose in blood, classic galactosemia may be indistinguishable from other inborn errors of galactose metabolism, including galactokinase deficiency and galactose epimerase deficiency. Further analysis of metabolites and enzyme activities are needed to identify the specific metabolic error.
The principal feature of Laron syndrome is abnormally short stature (dwarfism). Physical symptoms include: prominent forehead, depressed nasal bridge, underdevelopment of mandible, truncal obesity, and micropenis in males. The breasts of females reach normal size, and in some are large in relation to body size. It has been suggested that hyperprolactinemia may contribute to the enlarged breast size. Seizures are frequently seen secondary to hypoglycemia. Some genetic variations decrease intellectual capacity. Laron syndrome patients also do not develop acne, except temporarily during treatment with IGF-1 (if performed).
In 2011, it was reported that people with this syndrome in the Ecuadorian villages are resistant to cancer and diabetes and are somewhat protected against aging. This is consistent with findings in mice with a defective growth hormone receptor gene.
Autoimmune polyendocrine syndrome type 1 symptoms and signs include the following:
- Hypoparathyroidism
- Hypogonadism
- Vitiligo
- Alopecia
- Malabsorption
- Anemia
- Cataract
- Adrenal hyperplasia
Laron's syndrome, or Laron-type dwarfism, is an autosomal recessive disorder characterized by an insensitivity to growth hormone (GH), usually caused by a mutant growth hormone receptor. It causes short stature and an increased sensitivity to insulin which means that they are less likely to develop diabetes mellitus type 2 and possibly cancer as well. It can be treated with injections of recombinant IGF-1.
Type 1 tyrosinemia typically presents in infancy as failure to thrive and hepatomegaly. The primary effects are progressive liver and kidney dysfunction. The liver disease causes cirrhosis, conjugated hyperbilirubinemia, elevated AFP, hypoglycemia and coagulation abnormalities. This can lead to jaundice, ascites and hemorrhage. There is also an increased risk of hepatocellular carcinoma.
The kidney dysfunction presents as Fanconi syndrome: Renal tubular acidosis, hypophosphatemia and aminoaciduria. Cardiomyopathy, neurologic and dermatologic manifestations are also possible. The urine has an odor of cabbage or rancid butter.
Pancreatic islet cell tumors occur in 60 to 70% of patients. Tumors are usually multicentric. Multiple adenomas or diffuse islet cell hyperplasia commonly occurs; such tumors may arise from the small bowel rather than the pancreas. About 30% of tumors are malignant and have local or distant metastases. Malignant islet cell tumors due to MEN 1 syndrome often have a more benign course than do sporadically occurring malignant islet cell tumors.About 40% of islet cell tumors originate from a β-cell, secrete insulin (insulinoma), and can cause fasting hypoglycemia. β-cell tumors are more common in patients 40 years of age. Non-β-cell tumors are somewhat more likely to be malignant.
Most islet cell tumors secrete pancreatic polypeptide, the clinical significance of which is unknown. Gastrin is secreted by many non–β-cell tumors (increased gastrin secretion in MEN 1 also often originates from the duodenum). Increased gastrin secretion increases gastric acid, which may inactivate pancreatic lipase, leading to diarrhea and steatorrhea. Increased gastrin secretion also leads to peptic ulcers in > 50% of MEN 1 patients. Usually the ulcers are multiple or atypical in location, and often bleed, perforate, or become obstructed. Peptic ulcer disease may be intractable and complicated. Among patients presenting with Zollinger-Ellison syndrome, 20 to 60% have MEN 1.
A severe secretory diarrhea can develop and cause fluid and electrolyte depletion with non–β-cell tumors. This complex, referred to as the watery diarrhea, hypokalemia and achlorhydria syndrome (VIPoma) has been ascribed to vasoactive intestinal polypeptide, although other intestinal hormones or secretagogues (including prostaglandins) may contribute. Hypersecretion of glucagon, somatostatin, chromogranin, or calcitonin, ectopic secretion of ACTH resulting in Cushing's syndrome, and hypersecretion of somatotropin–releasing hormone (causing acromegaly) sometimes occur in non–β-cell tumors. All of these are rare in MEN 1.Nonfunctioning pancreatic tumors also occur in patients with MEN 1 and may be the most common type of pancreatoduodenal tumor in MEN 1. The size of the nonfunctioning tumor correlates with risk of metastasis and death.