Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The main symptoms of AIE include:
- Diarrhea (frequent loss of fluids)
- Intestinal inflammation
- Vomiting
- Intestinal bleeding
- Difficulty or inability to gain weight
- Rapid weight loss
- Decreased urine output from dehydration
Affected infants present within a few months after birth with failure to thrive and severe folate deficiency manifested as macrocytic anemia and developmental delays. There can be (i) pancytopenia, (ii) diarrhea and/or mucositis and/or (iii) immune deficiency due to T-cell dysfunction and hypoimmunoglobulinemia resulting in pneumonia usually due to Pneumocystis jirovecii. Recently, several infants with the immune deficiency syndrome were described. Untreated, or with inadequate treatment, there are progressive systemic and neurological signs with a spectrum of manifestations including seizures that are often intractable. Females with HFM are fertile and, if folate sufficient during pregnancy, have normal offspring. Subjects that carry one mutated PCFT allele are normal. The genomic and clinical features of HFM were recently reviewed.
Hereditary folate malabsorption (HFM - OMIM #229050) is a rare autosomal recessive disorder caused by loss-of-function mutations in the proton-coupled folate transporter (PCFT) gene, resulting in systemic folate deficiency and impaired delivery of folate to the brain.
Tricho-hepato-enteric syndrome is one particular form of intractable diarrhea of infancy, presenting typically in the first month of life. These babies were usually born small for their age and continue to experience failure to thrive, usually with a final short stature. Typical facial features include prominent forehead and cheeks, a broad nasal root and widely spaced eyes (hypertelorism). Their hairs are woolly, easily removed and poorly pigmented. Liver disease is mainly present as cirrhosis or fibrosis, and staining might reveal high iron content of the liver cells (consistent with hemochromatosis). Most evaluated patients had some degree of decrease in intelligence.
Autoimmune enteropathy (AIE) is a rare disorder of the immune system condition that affects infants, young children and (rarely) adults causing severe diarrhea, vomiting, and other morbidities of the digestive tract. AIE causes malabsorption of food, vitamins, and minerals often necessitating replacement fluids and total parenteral nutrition. Some disorders, such as IPEX Syndrome, include autoimmune enteropathy as well as autoimmune "pathies" of the skin, thyroid, other glands, or kidneys.
Tricho-hepato-enteric syndrome (THE), also known as syndromic or phenotypic diarrhea, is an extremely rare congenital bowel disorder which manifests itself as intractable diarrhea in infants with intrauterine growth retardation, hair and facial abnormalities. Many also have liver disease and abnormalities of the immune system. The associated malabsorption leads to malnutrition and failure to thrive.
It is thought to be a genetic disorder with an autosomal recessive inheritance pattern, although responsible genes have not been found and the exact cause remains unknown. Prognosis is poor; many patients die before the age of 5 (mainly from infections or cirrhosis), although most patients nowadays survive with intravenous feeding (parenteral nutrition).
"Laboratory changes": massive accumulation of chylomicrons in the plasma and corresponding severe hypertriglyceridemia. Typically, the plasma in a fasting blood sample appears creamy (plasma lactescence).
"Clinical symptoms:" The disease often presents in infancy with colicky pain, failure to thrive, and other symptoms and signs of the chylomicronemia syndrome. In women the use of estrogens or first pregnancy are also well known trigger factors for initial manifestation of LPLD. At all ages, the most common clinical manifestation is recurrent abdominal pain and acute pancreatitis. The pain may be epigastric, with radiation to the back, or it may be diffuse, with the appearance of an emergent acute abdomen. Other typical symptoms are eruptive xanthomas (in about 50% of patients), lipemia retinalis and hepatosplenomegaly.
"Complications:" Patients with LPLD are at high risk of acute pancreatitis, which can be life-threatening, and can lead to chronic pancreatic insufficiency and diabetes.
Most of the symptoms of BLS are non specific but nevertheless warrant the utmost attention. These include:
- Loss of appetite
- Nausea
- Flatulence
- Diarrhea
- Fullness after a meal
- Fatty stools (steatorrhea)
- Unintentional weight loss
- Generalised weakness
As a result of the concomitant vitamin and mineral deficiencies that occur as a result of the malabsorption associated with BLS patients with advanced cases should be investigated for:
- Vitamin B12 deficiency
- Folate deficiency
- Iron deficiency
- Vitamin E deficiency
The most prominent effect of JBS is pancreatic exocrine insufficiency. Varying degrees of decreased secretion of lipases, pancreatic juices such as trypsin, trypsinogen and others, as well as malabsorption of fats and disruptions of glucagon secretion and its response to hypoglycemia caused by insulin activity are major concerns when JBS is diagnosed. Associated with developmental errors, impaired apoptosis, and both prenatal and chronic inflammatory damage, necrosis and fibrosis of the pancreatic acini (clusters of pancreatic exocrine gland tissue, where secretion of pancreatic juice and related enzymes occurs), pancreatic exocrine insufficiency in JBS can additionally stem from congenital replacement of the acini with fatty tissue. Near total replacement of the entire pancreas with fatty tissue has also been reported. This is a progressive, sometimes fatal consequence of the disorder.
Endocrine insufficiency of the pancreas occurs with JBS, though it is sometimes less common and less pronounced than the more prominent effects on exocrine function. The islets of Langerhans are ducts in the pancreas where endocrine activity such as the release of hormones glucagon, somatostatin and insulin takes place. Pancreatic endocrine insufficiency in JBS can be associated with either a buildup of connective tissue in the islet regions, congenital replacement of the islets with fatty tissue, or improper nerve signalling to the islets. Endocrine dysfunction of the pancreas often results in diabetes mellitus. Both insulin resistance and diabetes have been observed with JBS, and it is suggested that diabetes should be considered as a complication of JBS and its course.
Ductular output of fluids and electrolytes is preserved in the pancreas of many with JBS, as well as moderate to normal levels of functioning bicarbonate.
Endocrine abnormalities in other areas have also been present with the disorder. These include hypothyroidism, growth hormone deficiency and hypopituitarism. Findings affecting pituitary function in some JBS patients have included such anomalies as the formation of a glial hamartoma (a neoplasm, or tumor composed of glial cells) on a lobe of the pituitary gland, as well congenital underdevelopment of the anterior pituitary. Growth failure and associated short stature (dwarfism) in JBS can be attributed to growth hormone deficiency caused by diminished anterior pituitary function, with malabsorption of fats playing a subsequent role.
EE is rarely symptomatic and is considered a subclinical condition. However, adults may have mild symptoms or malabsorption such as altered stool consistency, increased stool frequency and weight loss.
Sucrose intolerance, also called sucrase-isomaltase deficiency, congenital sucrase-isomaltase deficiency (CSID), or genetic sucrase-isomaltase deficiency (GSID), is the condition in which sucrase-isomaltase, an enzyme needed for proper metabolism of sucrose (sugar) and starch (i.e., grains and rice), is not produced or the enzyme produced is either partially functional or non-functional in the small intestine. All GSID patients lack fully functional sucrase, while the isomaltase activity can vary from minimal functionality to almost normal activity. The presence of residual isomaltase activity may explain why some GSID patients are better able to tolerate starch in their diet than others with GSID.
The highest prevalence rates are seen in the Inuit populations of Greenland (5–10%), Alaska (3–7%) and Canada (about 3%). European descent prevalence ranges from 0.2% to 0.05%. There is a lower prevalence reported in African Americans and Hispanics compared to Caucasians.
Blind loop syndrome (BLS), commonly referred to in the literature as small intestinal bacterial overgrowth (SIBO) or bacterial overgrowth syndrome (BOS), is a state that occurs when the normal bacterial flora of the small intestine proliferates to numbers that cause significant derangement to the normal physiological processes of digestion and absorption. In some cases of blind loop syndrome, overgrowth of pathogenic non-commensal bacteria has also been noted. It has long been understood that from birth, and throughout life, large amounts of bacteria reside symbiotically within animal gastrointestinal tracts such as the human gastrointestinal tract. The understanding of this gut flora has even led to novel treatments for bowel irregularity that utilize so called "probiotics" or good bacteria that aid in normal digestion.
The problem of BLS arises when the bacterial colonies residing in the upper gastrointestinal tract begin to grow out of control or are altered in their makeup thereby creating a burden on the normal physiological processes occurring in the small intestine. This results in problems inclusive of but not restricted to vitamin B12 deficiency, fat malabsorption and steatorrhea, fat-soluble vitamin deficiencies and intestinal wall injury.
Like other mitochrondrial diseases, "MNGIE is a multisystem disorder". MNGIE primarily affects the gastrointestinal and neurological systems. Gastrointestinal symptoms may include gastrointestinal dysmotility, due to inefficient peristalsis, which may result in pseudo-obstruction and cause malabsorption of nutrients. Additionally, gastrointestinal symptoms such as borborygmi, early satiety, diarrhea, constipation, gastroparesis, nausea, vomiting, weight loss, and diverticulitis may be present in MNGIE patients. Neurological symptoms may include diffuse leukoencephalopathy, peripheral neuropathy, and myopathy. Ocular symptoms may include retinal degeneration, ophthalmoplegia, and ptosis. Those with MNGIE are often thin and experience continuous weight loss. The characteristic thinness of MNGIE patients is caused by multiple factors including inadequate caloric intake due to gastrointestinal symptoms and discomfort, malabsorption of food from bacterial overgrowth due to decreased motility, as well as an increased metabolic demand due to inefficient production of ATP by the mitochondria.
Infants with LPI are usually symptom-free when breastfed because of the low protein concentration in human milk, but develop vomiting and diarrhea after weaning. The patients show failure to thrive, poor appetite, growth retardation, enlarged liver and spleen, prominent osteoporosis and osteopenia, delayed bone age and spontaneous protein aversion. Forced feeding of protein may lead to convulsions and coma. Mental development is normal if prolonged episode of hyperammonemia can be avoided. Some patients develop severe pulmonary and renal complications. High levels of plasma glutamine and glycine are observed.
The symptoms of short bowel syndrome can include:
- Abdominal pain
- Diarrhea and steatorrhea (oily, bulky stool, which can be malodorous)
- Fluid depletion
- Weight loss and malnutrition
- Fatigue
Persons with short bowel syndrome may have complications caused by malabsorption of vitamins and minerals, such as deficiencies in vitamins A, D, E, K, B (folic acid), and B, calcium, magnesium, iron, and zinc. These may appear as anemia, hyperkeratosis (scaling of the skin), easy bruising, muscle spasms, poor blood clotting, and bone pain.
Intestinal failure is decreased intestinal function such that nutrients, water, and electrolytes are not sufficiently absorbed. Short bowel syndrome is when there is less than of working bowel and is the most common cause of intestinal failure.
Substantial numbers of patients with intestinal malabsorption present initially with symptoms or laboratory abnormalities that point to other organ systems in the absence of or overshadowing symptoms referable to the gastrointestinal tract. For example, there is increasing epidemiologic evidence that more patients with coeliac disease present with anemia and osteopenia in the absence of significant classic gastrointestinal symptoms. Microcytic, macrocytic, or dimorphic anemia may reflect impaired iron, folate, or vitamin B12 absorption. Purpura, subconjunctival hemorrhage, or even frank bleeding may reflect hypoprothrombinemia secondary to vitamin K malabsorption. Osteopenia is common, especially in the presence of steatorrhea. Impaired calcium and vitamin D absorption and chelation of calcium by unabsorbed fatty acids resulting in fecal loss of calcium may all contribute. If calcium deficiency is prolonged, secondary hyperparathyroidism may develop. Prolonged malnutrition may induce amenorrhea, infertility, and impotence. Edema and even ascites may reflect hypoproteinemia associated with protein losing enteropathy caused by lymphatic obstruction or extensive mucosal inflammation. Dermatitis and peripheral neuropathy may be caused by malabsorption of specific vitamins or micronutrients and essential fatty acids.
Environmental enteropathy is believed to result in chronic malnutrition and subsequent growth stunting (low height-for-age measurement) as well as other child development deficits.
Loss of Pancreatic enzymes leads to maldigestions and malabsorption which may lead to:
- steatorrhea
- weight loss
- fatigue
- flatulence and abdominal distention (bacterial fermentation of unabsorbed food)
- edema (hypoalbuminemia)
- anemia (Vitamin B12, iron, folate deficiency)
- bleeding disorders (Vitamin K malabsorption)
- Metabolic bone disease (Vitamin D deficiency)
- neurologic manifestation
- hypocalcemia
Depending on the nature of the disease process causing malabsorption and its extent, gastrointestinal symptoms may range from severe to subtle or may even be totally absent. Diarrhea, weight loss, flatulence, abdominal bloating, abdominal cramps, and pain may be present. Although diarrhea is a common complaint, the character and frequency of stools may vary considerably ranging from over 10 watery stools per day to less than one voluminous putty-like stool, the latter causing some patients to complain of constipation. On the other hand, stool mass is invariably increased in patients with steatorrhea and generalized malabsorption above the normal with 150–200 g/day. Not only do unabsorbed nutrients contribute to stool mass but mucosal fluid and electrolyte secretion is also increased in diseases associated with mucosal inflammation such as coeliac disease. In addition, unabsorbed fatty acids, converted to hydroxy-fatty acids by colonic flora, as well as unabsorbed bile acids both impair absorption and induce secretion of water and electrolytes by the colon adding to stool mass. Weight loss is common among patients with significant intestinal malabsorption but must be evaluated in the context of caloric intake. Some patients compensate for fecal wastage of unabsorbed nutrients by significantly increasing their oral intake. Eliciting a careful dietary history from patients with suspected malabsorption is therefore crucial. Excessive flatus and abdominal bloating may reflect excessive gas production due to fermentation of unabsorbed carbohydrate, especially among patients with primary or secondary disaccharidase deficiency. Malabsorption of dietary nutrients and excessive fluid secretion by inflamed small intestine also contribute to abdominal distention and bloating. Prevalence, severity, and character of abdominal pain vary considerably among the various disease processes associated with intestinal malabsorption. For example, pain is common in patients with chronic pancreatitis or pancreatic cancer and Crohn disease, but it is absent in many patients with coeliac disease or postgastrectomy malabsorption.
Lysinuric protein intolerance (LPI), also called hyperdibasic aminoaciduria type 2,cationic aminoaciduria or familial protein intolerance, is an autosomal recessive metabolic disorder affecting amino acid transport.
About 140 patients have been reported, almost half of them of Finnish origin. Individuals from Japan, Italy, Morocco and North Africa have also been reported.
Babies with glutaric acidemia type 1 often are born with unusually large heads (macrocephaly). Macrocephaly is amongst the earliest signs of GA1. It is thus important to investigate all cases of macrocephaly of unknown origins for GCDH deficiency, given the importance of the early diagnosis of GA1.
Macrocephaly is a "pivotal clinical sign" of many neurological diseases. Physicians and parents should be aware of the benefits of investigating for an underlying neurological disorder, particularly a neurometabolic one, in children with head circumferences in the highest percentiles.
Lipoprotein lipase deficiency (also known as "familial chylomicronemia syndrome", "chylomicronemia", "chylomicronemia syndrome" and "hyperlipoproteinemia type Ia") is a rare autosomal recessive lipid disorder caused by a mutation in the gene which codes lipoprotein lipase. As a result, afflicted individuals lack the ability to produce lipoprotein lipase enzymes necessary for effective breakdown of triglycerides.
Sucrose intolerance can be caused by genetic mutations in which both parents must contain this gene for the child to carry the disease (so-called primary sucrose intolerance). Sucrose intolerance can also be caused by irritable bowel syndrome, aging, or small intestine disease (secondary sucrose intolerance). There are specific tests used to help determine if a person has sucrose intolerance. The most accurate test is the enzyme activity determination, which is done by biopsying the small intestine. This test is a diagnostic for GSID. Other tests which can aid in the diagnosis of GSID but which are not truly diagnostic for the disease are the sucrose breath test, and a genetic test which tests for the absence of certain genes which are thought to be responsible for GSID.
Sucrose (also termed "saccharose") is a disaccharide and is a two-sugar chain composed of glucose and fructose which are bonded together. A more familiar name is table, beet, or cane sugar. It was believed that most cases of sucrose intolerance were to do an autosomal recessive, genetic, metabolic disease. Based on new data patients with heterozygous and compound heterozygous genotypes can have symptom presentation as well. GSID involves deficiency in the enzyme sucrase-isomaltase, which breaks apart the glucose and fructose molecules. When disaccharides are consumed, they must be broken down into monosaccharides by enzymes in the intestines before they can be absorbed. Monosaccharides, or single sugar units, are absorbed directly into the blood.
A deficiency of sucrase may result in malabsorption of sugar, which can lead to potentially serious symptoms. Since sucrose-isomaltase is involved in the digestion of starches, some GSID patients may not be able to absorb starches as well. It is important for those with sucrose intolerance to minimize sucrose consumption as much as possible. Dietary supplements or medications may be taken as a substitute for the enzyme missing or to introduce healthy bacteria into the immune system.