Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some of the symptoms and signs of IPEX syndrome are the following:
All people with ALPS have signs of lymphoproliferation, which makes it the most common clinical manifestation of the disease. The increased proliferation of lymphoid cells can cause the size of lymphoid organs such as the lymph nodes and spleen to increase (lymphadenopathy and splenomegaly, present in respectively over 90% and over 80% of patients). The liver is enlarged (hepatomegaly in 30 - 40% of patients).
Autoimmune disease is the second most common clinical manifestation and one that most often requires treatment. Autoimmune cytopenias: Most common. Can be mild to very severe. Can be intermittent or chronic. These include: Autoimmune hemolytic anemia, Autoimmune neutropenia, Autoimmune thrombocytopenia.
Other signs can affect organ systems similar to systemic lupus erythematosus (least common, affecting <5% of patients) Symptoms of the nervous system include: Autoimmune cerebellar ataxia; Guillain–Barré syndrome; transverse myelitis. Gastrointestinal signs like Autoimmune esophagitis, gastritis, colitis, hepatitis, pancreatitis can be found or (Dermatologic) Urticaria, (Pulmonary) bronchiolitis obliterans, (Renal) Autoimmune glomerulonephritis, nephrotic syndrome.
Another sign are cancers such as Hodgkin and non-Hodgkin lymphomas which appear to be increased, possibly due to Epstein–Barr virus-encoded RNA-positivity. Some carcinomas may occur. Unaffected family members with genetic mutations are also at an increased risk of developing cancer.
PASLI disease is a rare genetic disorder of the immune system. PASLI stands for “p110 delta activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency.” The immunodeficiency manifests as recurrent infections usually starting in childhood. These include bacterial infections of the respiratory system and chronic viremia due to Epstein-Barr virus (EBV) and/or cytomegalovirus (CMV). Individuals with PASLI disease also have an increased risk of EBV-associated lymphoma. Investigators Carrie Lucas, Michael Lenardo, and Gulbu Uzel at the National Institute of Allergy and Infectious Diseases at the U.S. National Institutes of Health and Sergey Nejentsev at the University of Cambridge, UK simultaneously described a mutation causing this condition which they called Activated PI3K Delta Syndrome (APDS).
Clinically, PASLI disease is characterized by recurrent sinopulmonary infections that can lead to progressive airway damage. Patients also suffer from lymphoproliferation (large lymph nodes and spleen), chronic viremia due to EBV or CMV, distinctive lymphoid nodules at mucosal surfaces, autoimmune cytopenias, and EBV-driven B cell lymphoma. Importantly, the clinical presentations and disease courses are variable with some individuals severely affected, whereas others show little manifestation of disease. This “variable expressivity,” even within the same family, can be striking and may be explained by differences in lifestyle, exposure to pathogens, treatment efficacy, or other genetic modifiers.
IPEX (immunodysregulation polyendocrinopathy enteropathy X-linked) syndrome is a rare disease linked to the dysfunction of the transcription factor FOXP3, widely considered to be the master regulator of the regulatory T cell lineage. It leads to the dysfunction of regulatory T-cells and the subsequent autoimmunity. The disorder manifests with autoimmune enteropathy, psoriasiform or eczematous dermatitis, nail dystrophy, autoimmune endocrinopathies, and autoimmune skin conditions such as alopecia universalis and bullous pemphigoid.
Management for immunodysregulation polyendocrinopathy enteropathy X-linked syndrome has seen limited success in treating the syndrome by bone marrow transplantation.
As HES affects many organs at the same time, symptoms may be numerous. Some possible symptoms a patient may present with include:
The hypereosinophilic syndrome (HES) is a disease characterized by a persistently elevated eosinophil count (≥ 1500 eosinophils/mm³) in the blood for at least six months without any recognizable cause, with involvement of either the heart, nervous system, or bone marrow.
HES is a diagnosis of exclusion, after clonal eosinophilia (such as "FIP1L1-PDGFRA"-fusion induced hypereosinophelia and leukemia) and reactive eosinophilia (in response to infection, autoimmune disease, atopy, hypoadrenalism, tropical eosinophilia, or cancer) have been ruled out.
There are some associations with chronic eosinophilic leukemia as it shows similar characteristics and genetic defects.
If left untreated, HES is progressive and fatal. It is treated with glucocorticoids such as prednisone. The addition of the monoclonal antibody mepolizumab may reduce the dose of glucocorticoids.
Autoimmune lymphoproliferative syndrome (ALPS), also known as Canale-Smith syndrome, is a form of lymphoproliferative disorder (LPDs). It affects lymphocyte apoptosis. It is a RASopathy.
It is a rare genetic disorder of abnormal lymphocyte survival caused by defective Fas mediated apoptosis. Normally, after infectious insult, the immune system down-regulates by increasing Fas expression on activated B and T lymphocytes and Fas-ligand on activated T lymphocytes. Fas and Fas-ligand interact to trigger the caspase cascade, leading to cell apoptosis. Patients with ALPS have a defect in this apoptotic pathway, leading to chronic non-malignant lymphoproliferation, autoimmune disease, and secondary cancers.
As of 2007, fewer than 500 Yakut individuals have been infected with VE. Viliuisk Encephalomyelitis is classified as a progressive neurological disorder that ultimately ends in the death of the infected individual. The disease has three distinguishable phases: The acute form, the progressive form, and the chronic form.
The acute form is the most rapid and most violent of all the stages. It begins with the characteristic rigidity of the muscles, accompanied by slurred speech, severe headaches, and exaggeration of cold-like symptoms. Patients usually die within weeks of the initial symptoms. Routine post-mortem examinations yield: severe inflammation of the brain lining, clusters of dead cells and tissue, and largely increased amounts of macrophages and lymphocytes.
The progressive form is the most common case. Patients initially experience acute-like symptoms which are not as severe, and subside within a few weeks. Following the sub-acute phase, the patients experience a few mild symptoms including some behavioral changes, incoordination, and difficulty in speech. Eventually the disease developed fully and those infected were stricken with the characteristic symptoms of rigidity, slurred speech, and deterioration of cognitive functions. Ultimately, brain function depreciates rapidly resulting in death.
Many patients who undergo the chronic form claim never to have had an acute attack. These patients endure varying measures of impairment and suffer mental deterioration for the remainder of their lives. Usually they live to be very old and succumb to other diseases.
In almost all cases there are changes characteristic of VE. Early onset shows an increased number of lymphocytes and increased protein concentration — which reduces over many years. These factors help neurologists determine the form of VE based on progression. The trademark changes in the brain include: thickened inflamed meninges, necrotic cortical lesions, increased number of lymphocytes, and neuronal death.
Viliuisk Encephalomyelitis (VE) is a fatal progressive neurological disorder found only in the Sakha (Iakut/Yakut) population of central Siberia. About 15 new cases are reported each year. VE is a very rare disease and little research has been conducted. The causative agents, origin of the disease, and involved candidate genes are currently unknown, but much research has been done in pursuit of the answers.
Those inflicted with the disease survive for a period of only a few months to several years. VE follows three main courses of infection: an acute form, a sub-acute form subsiding into a progressive form, and a chronic form. Initially, the infected patients experience symptoms such as: severe headaches, delirium, lethargy, meningism, bradykinesia, and incoordination. A small percentage of patients die during the acute phase as result of a severe coma. In all cases the disease is fatal.
BAL has similar symptoms with other types of leukemia, but usually more serious.
Symptoms caused by bone marrow damage
Bruising, spotting: the reason is lack of platelets, it is very common in BAL patients, most of patients die due to the
Anemia: Because the decline of hematopoietic function, need blood transfusion therapy
Persistent fever, infection prolonged healing:
Diffuse hemorrhage: also called Septicemia, which is dangerous and might lead to death.
Symptoms caused by blood cancer cells infiltration into tissues:
Lymphadenopathy
Joint pain
Swelling of the gums
Hepatoslenomegaly
Headache and vomiting: blood cancer infiltration into the wear performance of the central nervous system.
Skin lumps: Because look was slightly green, also known as the "Green tumor."
Pericardial or pleural effusion
Autosomal Dominant Retinal Vasculopathy with Cerebral Leukodystrophy (AD-RVCL) (previously known also as Cerebroretinal Vasculopathy, CRV, or Hereditary Vascular Retinopathy, HVR or Hereditary Endotheliopathy, Retinopathy, Nephropathy, and Stroke, HERNS) is an inherited condition resulting from a frameshift mutation to the TREX1 gene. This genetically inherited condition affects the retina and the white matter of the central nervous system, resulting in vision loss, lacunar strokes and ultimately dementia. Symptoms commonly begin in the early to mid-forties, and treatments currently aim to manage or alleviate the symptoms rather than treating the underlying cause. The overall prognosis is poor, and death can sometimes occur within 10 years of the first symptoms appearing.
AD-RVCL (CRV) Acronym
Autosomal Dominance (genetics) means only one copy of the gene is necessary for the symptoms to manifest themselves.
Retinal Vasculopathy means a disorder that is associated with a disease of the blood vessels in the retina.
Cerebral means having to do with the brain.
Leukodystrophy means a degeneration of the white matter of the brain.
Pathogenesis
The main pathologic process centers on small blood vessels that prematurely “drop out” and disappear. The retina of the eye and white matter of the brain are the most sensitive to this pathologic process. Over a five to ten-year period, this vasculopathy (blood vessel pathology) results in vision loss and destructive brain lesions with neurologic deficits and death.
Most recently, AD-RVCL (CRV) has been renamed. The new name is CHARIOT which stands for Cerebral Hereditary Angiopathy with vascular Retinopathy and Impaired Organ function caused by TREX1 mutations.
Treatment
Currently, there is no therapy to prevent the blood vessel deterioration.
About TREX1
The official name of the TREX1 gene is “three prime repair exonuclease 1.” The normal function of the TREX1 gene is to provide instructions for making the 3-prime repair exonuclease 1 enzyme. This enzyme is a DNA exonuclease, which means it trims molecules of DNA by removing DNA building blocks (nucleotides) from the ends of the molecules. In this way, it breaks down unneeded DNA molecules or fragments that may be generated during genetic material in preparation for cell division, DNA repair, cell death, and other processes.
Changes (mutations) to the TREX1 gene can result in a range of conditions one of which is AD-RVCL. The mutations to the TREX1 gene are believed to prevent the production of the 3-prime repair exonuclease 1 enzyme. Researchers suggest that the absence of this enzyme may result in an accumulation of unneeded DNA and RNA in cells. These DNA and RNA molecules may be mistaken by cells for those of viral invaders, triggering immune system reactions that result in the symptoms of AD-RVCL.
Mutations in the TREX1 gene have also been identified in people with other disorders involving the immune system. These disorders include a chronic inflammatory disease called systemic lupus erythematosus (SLE), including a rare form of SLE called chilblain lupus that mainly affects the skin.
The TREX1 gene is located on chromosome 3: base pairs 48,465,519 to 48,467,644
The immune system.
- The immune system is composed of white blood cells or leukocytes.
- There are 5 different types of leukocytes.
- Combined, the 5 different leukocytes represent the 2 types of immune systems (The general or innate immune system and the adaptive or acquired immune system).
- The adaptive immune system is composed of two types of cells (B-cells which release antibodies and T-cells which destroy abnormal and cancerous cells).
How the immune system becomes part of the condition.
During mitosis, tiny fragments of “scrap” single strand DNA naturally occur inside the cell. Enzymes find and destroy the “scrap” DNA. The TREX1 gene provides the information necessary to create the enzyme that destroys this single strand “scrap” DNA. A mutation in the TREX1 gene causes the enzyme that would destroy the single strand DNA to be less than completely effective. The less than completely effective nature of the enzyme allows “scrap” single strand DNA to build up in the cell. The buildup of “scrap” single strand DNA alerts the immune system that the cell is abnormal.
The abnormality of the cells with the high concentration of “scrap” DNA triggers a T-cell response and the abnormal cells are destroyed. Because the TREX1 gene is identical in all of the cells in the body the ineffective enzyme allows the accumulation of “scrap” single strand DNA in all of the cells in the body. Eventually, the immune system has destroyed enough of the cells in the walls of the blood vessels that the capillaries burst open. The capillary bursting happens throughout the body but is most recognizable when it happens in the eyes and brain because these are the two places where capillary bursting has the most pronounced effect.
Characteristics of AD-RVCL
- No recognizable symptoms until after age 40.
- No environmental toxins have been found to be attributable to the condition.
- The condition is primarily localized to the brain and eyes.
- Optically correctable, but continuous, deterioration of visual acuity due to extensive multifocal microvascular abnormalities and retinal neovascularization leading, ultimately, to a loss of vision.
- Elevated levels of alkaline phosphatase.
- Subtle vascular changes in the retina resembling telangiectasia (spider veins) in the parafovea circulation.
- Bilateral capillary occlusions involving the perifovea vessels as well as other isolated foci of occlusion in the posterior pole of the retina.
- Headaches due to papilledema.
- Mental confusion, loss of cognitive function, loss of memory, slowing of speech and hemiparesis due to “firm masses” and white, granular, firm lesions in the brain.
- Jacksonian seizures and grand mal seizure disorder.
- Progressive neurologic deterioration unresponsive to systemic corticosteroid therapy.
- Discrete, often confluent, foci of coagulation necrosis in the cerebral white matter with intermittent findings of fine calcium deposition within the necrotic foci.
- Vasculopathic changes involving both arteries and veins of medium and small caliber present in the cerebral white matter.
- Fibroid necrosis of vessel walls with extravasation of fibrinoid material into adjacent parenchyma present in both necrotic and non-necrotic tissue.
- Obliterative fibrosis in all the layers of many vessel walls.
- Parivascular, adventitial fibrosis with limited intimal thickening.
Conditions with similar symptoms that AD-RVCL can be misdiagnosed as:
- Brain tumors
- Diabetes
- Macular degeneration
- Telangiectasia (Spider veins)
- Hemiparesis (Stroke)
- Glaucoma
- Hypertension (high blood pressure)
- Systemic Lupus Erythematosus (SLE (same original pathogenic gene, but definitely a different disease because of a different mutation in TREX1))
- Polyarteritis nodosa
- Granulomatosis with polyangiitis
- Behçet's disease
- Lymphomatoid granulomatosis
- Vasculitis
Clinical Associations
- Raynaud's phenomenon
- Anemia
- Hypertension
- Normocytic anemia
- Normochromic anemia
- Gastrointestinal bleeding or telangiectasias
- Elevated alkaline phosphatase
Definitions
- Coagulation necrosis
- Endothelium
- Fibrinoid
- Fibrinoid necrosis
- Frameshift mutation
- Hemiparesis
- Jacksonian seizure
- Necrotic
- Necrosis
- Papilledema
- Perivascular
- Retinopathy
- Telangiectasia
- Vasculopathy
- Vascular
What AD-RVCL is not:
- Infection
- Cancer
- Diabetes
- Glaucoma
- Hypertension
- A neurological disorder
- Muscular dystrophy
- Systemic Lupus Erythematosis (SLE)
- Vasculitis
Things that have been tried but turned out to be ineffective or even make things worse:
- Antibiotics
- Steroids
- X-Ray therapy
- Immunosuppression
History of AD-RVCL (CRV)
- 1985 – 1988: CRV (Cerebral Retinal Vasculopathy) was discovered by John P. Atkinson, MD at Washington University School of Medicine in St. Louis, MO
- 1988: 10 families worldwide were identified as having CRV
- 1991: Related disease reported, HERNS (Hereditary Endiotheliopathy with Retinopathy, Nephropathy and Stroke – UCLA
- 1998: Related disease reported, HRV (Hereditary Retinal Vasculopathy) – Leiden University, Netherlands
- 2001: Localized to Chromosome 3.
- 2007: The specific genetic defect in all of these families was discovered in a single gene called TREX1
- 2008: Name changed to AD-RVCL Autosomal Dominant-Retinal Vasculopathy with Cerebral Leukodystrophy
- 2009: Testing for the disease available to persons 21 and older
- 2011: 20 families worldwide were identified as having CRV
- 2012: Obtained mouse models for further research and to test therapeutic agents
Cutaneous lymphoid hyperplasia refers to a groups of benign cutaneous disorders characterized by collections of lymphocytes, macrophages, and dendritic cells in the skin. Conditions included in this groups are:
- Cutaneous lymphoid hyperplasia with nodular pattern, a condition of the skin characterized by a solitary or localized cluster of asymptomatic erythematous to violaceous papules or nodules
- Cutaneous lymphoid hyperplasia with bandlike and perivascular patterns, a condition of the skin characterized by skin lesions that clinically resemble mycosis fungoides
The IgM type of heavy chain disease, μHCD, is often misdiagnosed as chronic lymphoid leukemia (CLL) because the two diseases are often associated with each other and show similar symptoms.
Niemann–Pick Type B involves an enlarged liver and spleen hepatosplenomegaly, growth retardation, and problems with lung function including frequent lung infections. Other signs include blood abnormalities such as abnormal cholesterol and lipid levels, and low numbers of blood cells involved in clotting (platelets). The brain is not affected in Type B and the disease often presents in the pre-teen years.
Onset usually occurs in childhood, however some adult cases have been found. Generally, physicians look for the symptoms in children. Symptoms include cerebellar ataxia, spasticity, optic atrophy, epilepsy, loss of motor functions, irritability, vomiting, coma, and even fever has been tied to VWM. The neurological disorders and symptoms which occur with VWM are not specific to countries; they are the same all over the world. Neurological abnormalities may not always be present in those who experience onset as adults. Symptoms generally appear in young children or infants who were previously developing fairly normally.
Franklin's disease (gamma heavy chain disease)
It is a very rare B-cell lymphoplasma cell proliferative disorder which may be associated with autoimmune diseases and infection is a common characteristic of the disease. It is characterized by lymphadenopathy, fever, anemia, malaise, hepatosplenomegaly, and weakness. The most distinctive symptom is palatal edema, caused by nodal involvement of Waldeyer's ring.
Diagnosis is made by the demonstration of an anomalous serum M component that reacts with anti-IgG but not anti-light chain reagents. Bone marrow examination is usually nondiagnostic.
Patients usually have a rapid downhill course and die of infection if left untreated or misdiagnosed.
Patients with Franklin disease usually have a history of progressive weakness, fatigue, intermittent fever, night sweats and weight loss and may present with lymphadenopathy (62%), splenomegaly (52%) or hepatomegaly (37%). The fever is considered secondary to impaired cellular and humoral immunity, and thus recurrent infections are the common clinical presentation in Franklin disease. Weng et al. described the first case of Penicillium sp. infection in a patient with Franklin disease and emphasized the importance of proper preparation for biopsy, complete hematologic investigation, culture preparation and early antifungal coverage to improve the outcome.
The γHCD can be divided into three categories based on the various clinical and pathological features. These categories are disseminated lymphoproliferative disease, localized proliferative disease and no apparent proliferative disease.
- Disseminated lymphoproliferative disease is found in 57-66% of patients diagnosed with γHCD. Lymphadenopathy and constitutional symptoms are the usual features.
- Localized proliferative disease is found in approximately 25% of γHCD patients. This is characterized by a localization of the mutated heavy chains in extramedullary tissue, or solely in the bone marrow.
- No apparent proliferative disease is seen in 9-17% of patients with γHCD, and there is almost always an underlying autoimmune disorder.
Follicular hyperplasia (or "reactive follicular hyperplasia" or "lymphoid nodular hyperplasia") is a type of lymphoid hyperplasia. It is caused by a stimulation of the B cell compartment. It is caused by an abnormal proliferation of secondary follicles and occurs principally in the cortex without broaching the lymph node capsule. The follicles are cytologically polymorphous, are often polarized, and vary in size and shape. Follicular hyperplasia is distinguished from follicular lymphoma in its polyclonality and lack of bcl-2 protein expression, whereas follicular lymphoma is monoclonal, and does express bcl-2).
Jessner lymphocytic infiltrate of the skin is a cutaneous condition characterized by a persistent papular and plaque-like skin eruption which can occur on the neck, face and back and may re-occur. This is an uncommon skin disease and is a benign collection of lymph cells. Its cause is not known and can be hereditary. It is named for Max Jessner. It is thought to be equivalent to lupus erythematosus tumidus.
It can occur as the result of ACE inhibitors and a number of medications used to treat multiple sclerosis including glatiramer acetate.
Some specific reactive lymphadenopathies with a predominantly follicular pattern:
- Rheumatoid arthritis
- Sjogren syndrome
- IgG4-related disease (IgG4-related lymphadenopathy)
- Kimura disease
- Toxoplasmosis
- Syphilis
- Castleman disease
- HIV-associated lymphadenopathy
- Progressive transformation of germinal centers (PTGC)
Subacute sclerosing panencephalitis (SSPE) is a rare and chronic form of progressive brain inflammation caused by a persistent infection with measles virus (which can be a result of a mutation of the virus itself). The condition primarily affects children and young adults. It has been estimated that about 1 in 10,000 people infected with measles will eventually develop SSPE. However, a 2016 study estimated that the rate for babies who contracted measles was as high as 1 in 609. No cure for SSPE exists and the condition is often fatal. However, SSPE can be managed by medication if treatment is started at an early stage. Much of the work on SSPE has been performed by the National Institute of Neurological Disorders and Stroke (NINDS).
SSPE should not be confused with acute disseminated encephalomyelitis which has a similar cause but very different timing and course.
BVVL is marked by a number of cranial nerve palsies, including those of the motor components involving the 7th and 9th-12th cranial nerves, spinal motor nerves, and upper motor neurons. Major features of BVVL include facial and neck weakness, fasciculation of the tongue, and neurological disorders from the cranial nerves. The neurological manifestations develop insidiously: they usually begin with sensorineural deafness, progress inexorably to paralysis, and often culminate in respiratory failure. Most mortality in patients has been from either respiratory infections or respiratory muscle paralysis. Pathological descriptions of BVVL include injury and depletion of 3rd-7th cranial nerves, loss of the spinal anterior horn cells, degeneration of Purkinje cells, as well as degeneration of the spinocerebellar and pyramidal tracts. The first symptoms in nearly all cases of BVVL is progressive vision loss and deafness, and the first initial symptoms are seen anywhere from one to three years.
Most cases of deafness are followed by a latent period that can extend anywhere from weeks to years, and this time is usually marked by cranial nerve degeneration. Neurological symptoms of BVVL include optic atrophy, cerebellar ataxia, retinitis pigmentosa, epilepsy and autonomic dysfunction. Non-neurological symptoms can include diabetes, auditory hallucinations, respiratory difficulties, color blindness, and hypertension.
Characterized by a history of primary measles infection usually before the age of 2 years, followed by several asymptomatic years (6–15 on average), and then gradual, progressive psychoneurological deterioration, consisting of personality change, seizures, myoclonus, ataxia, photosensitivity, ocular abnormalities, spasticity, and coma.
Niemann–Pick disease, SMPD1-associated refers to two different types of Niemann–Pick disease which are associated with the SMPD1 gene.
There are approximately 1,200 cases of NPA and NPB worldwide with the majority of cases being Type B or an intermediate form.
Descriptions of type E and type F have been published, but they are not well characterized, and are currently classified under type B.
Acute biphenotypic leukaemia is an uncommon type of leukemia which arises in multipotent progenitor cells which have the ability differentiating into both myeloid and lymphoid lineages. It is a subtype of "leukemia of ambiguous lineage".
The direct reason lead BAL is still not clear. BAL can be de novo or secondary to previous cytotoxic therapy. Many factors, such as virus, hereditary factors, radiation, might have relationship with BAL.
BAL is hard to treat, usually the chemotherapy is chosen according to the morphology of the blast (ALL or AML). The stem cell transplantation is highly recommended.
About 5% of acute leukaemia cases are BAL. BAL could occur in all the age of the people, but more in adults than in children.