Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Thrombocytopenia usually has no symptoms and is picked up on a routine full blood count (or complete blood count). Some individuals with thrombocytopenia may experience external bleeding such as nosebleeds, and/or bleeding gums. Some women may have heavier or longer periods or breakthrough bleeding. Bruising, particularly purpura in the forearms and petechiae in the feet, legs, and mucous membranes, may be caused by spontaneous bleeding under the skin.
Eliciting a full medical history is vital to ensure the low platelet count is not secondary to another disorder. It is also important to ensure that the other blood cell types, such as red blood cells and white blood cells, are not also suppressed.
Painless, round and pinpoint (1 to 3 mm in diameter) petechiae usually appear and fade, and sometimes group to form ecchymoses. Larger than petechiae, ecchymoses are purple, blue or yellow-green areas of skin that vary in size and shape. They can occur anywhere on the body.
A person with this disease may also complain of malaise, fatigue and general weakness (with or without accompanying blood loss). Acquired thrombocytopenia may be associated with a history of drug use. Inspection typically reveals evidence of bleeding (petechiae or ecchymoses), along with slow, continuous bleeding from any injuries or wounds. Adults may have large, blood-filled bullae in the mouth. If the person's platelet count is between 30,000 and 50,000/mm, bruising with minor trauma may be expected; if it is between 15,000 and 30,000/mm, spontaneous bruising will be seen (mostly on the arms and legs).
Thrombocytopenia is a condition characterized by abnormally low levels of thrombocytes, also known as platelets, in the blood.
A normal human platelet count ranges from 150,000 to 450,000 platelets per microliter of blood. These limits are determined by the 2.5th lower and upper percentile, so values outside this range do not necessarily indicate disease. One common definition of thrombocytopenia requiring emergency treatment is a platelet count below 50,000 per microliter.
High platelet levels do not necessarily signal any clinical problems, and are picked up on a routine full blood count. However, it is important that a full medical history be elicited to ensure that the increased platelet count is not due to a secondary process. Often, it occurs in tandem with an inflammatory disease, as the principal stimulants of platelet production (e.g. thrombopoietin) are elevated in these clinical states as part of the acute phase reaction.
High platelet counts can occur in patients with polycythemia vera (high red blood cell counts), and is an additional risk factor for complications.
A very small segment of patients report symptoms of erythromelalgia, a burning sensation and redness of the extremities that resolves with cooling and/or aspirin use.
Scientific literature sometimes excludes thrombocytosis from the scope of thrombophilia by definition, but practically, by the definition of thrombophilia as an increased predisposition to thrombosis, thrombocytosis (especially primary thrombocytosis) is a potential cause of thrombophilia. Conversely, secondary thrombocytosis very rarely causes thrombotic complications.
Immune thrombocytopenia (ITP) is a type of thrombocytopenic purpura defined as isolated low platelet count (thrombocytopenia) with normal bone marrow and the absence of other causes of thrombocytopenia. It causes a characteristic purpuric rash and an increased tendency to bleed. Two distinct clinical syndromes manifest as an acute condition in children and a chronic condition in adults. The acute form often follows an infection and has a spontaneous resolution within two months. Chronic immune thrombocytopenia persists longer than six months with a specific cause being unknown.
ITP is an autoimmune disease with antibodies detectable against several platelet surface antigens.
ITP is diagnosed by a low platelet count in a complete blood count (a common blood test). However, since the diagnosis depends on the exclusion of other causes of a low platelet count, additional investigations (such as a bone marrow biopsy) may be necessary in some cases.
In mild cases, only careful observation may be required but very low counts or significant bleeding may prompt treatment with corticosteroids, intravenous immunoglobulin, anti-D immunoglobulin, or immunosuppressive drugs. "Refractory ITP" (not responsive to conventional treatment) may require splenectomy, the surgical removal of the spleen. Platelet transfusions may be used in severe bleeding together with a very low count. Sometimes the body may compensate by making abnormally large platelets.
Signs include the spontaneous formation of bruises (purpura) and petechiae (tiny bruises), especially on the extremities, bleeding from the nostrils and/or gums, and menorrhagia (excessive menstrual bleeding), any of which may occur if the platelet count is below 20,000 per μl. A very low count (<10,000 per μl) may result in the spontaneous formation of hematomas (blood masses) in the mouth or on other mucous membranes. Bleeding time from minor lacerations or abrasions is usually prolonged.
Serious and possibly fatal complications due to extremely low counts (<5,000 per μl) include subarachnoid or intracerebral hemorrhage (bleeding inside the skull or brain), lower gastrointestinal bleeding or other internal bleeding. An ITP patient with an extremely low count is vulnerable to internal bleeding caused by blunt abdominal trauma, as might be experienced in a motor vehicle crash. These complications are not likely when the platelet count is above 20,000 per μl.
Thrombocytosis (or thrombocythemia) is the presence of high platelet counts in the blood, and can be either primary (also termed essential and caused by a myeloproliferative disease) or reactive (also termed secondary). Although often symptomless (particularly when it is a secondary reaction), it can predispose to thrombosis in some patients. Thrombocytosis can be contrasted with thrombocytopenia, a loss of platelets in the blood.
In a healthy individual, a normal platelet count ranges from 150,000 and 450,000 per mm³ (or microlitre) (150–450 x 10/L). These limits, however, are determined by the 2.5th lower and upper percentile, and a deviation does not necessary imply any form of disease. Nevertheless, counts over 750,000 (and especially over a million) are considered serious enough to warrant investigation and intervention.
The signs and symptoms of TTP may at first be subtle and nonspecific. Many people experience an influenza-like or diarrheal illness before developing TTP. Neurological symptoms are very common and vary greatly in severity. Frequently reported symptoms include feeling very tired, confusion, and headaches. Seizures and symptoms similar to those of a stroke can also be seen.
As TTP progresses, blood clots form within small blood vessels (microvasculature), and platelets (clotting cells) are consumed. As a result, bruising, and rarely bleeding can occur. The bruising often takes the form of purpura, while the most common site of bleeding, if it occurs, is from the nose or gums. Larger bruises (ecchymoses) may also develop.
The classic presentation of TTP includes a constellation of five medical signs which classically support the clinical diagnosis of TTP, although it is unusual for patients to present with all 5 symptoms. The pentad includes:
- Fever
- Changes in mental status
- Thrombocytopenia
- Reduced kidney function
- Haemolytic anaemia (microangiopathic hemolytic anemia).
High blood pressure (hypertension) may be found on examination.
Pancytopenia usually requires a bone marrow biopsy in order to distinguish among different causes.
- anemia: hemoglobin < 13.5 g/dL (male) or 12 g/dL (female).
- leukopenia: total white cell count < 4.0 x 10/L. Decrease in all types of white blood cells (revealed by doing a differential count).
- thrombocytopenia: platelet count < 150×10/L.
Pancytopenia is a medical condition in which there is a reduction in the number of red and white blood cells, as well as platelets.
If only two parameters from the full blood count are low, the term bicytopenia can be used. The diagnostic approach is the same as for pancytopenia.
Leukopenia can be identified with a complete blood count.
Below are blood reference ranges for various types leucocytes/WBCs. The 2.5 percentile (right limits in intervals in image, showing 95% prediction intervals) is a common limit for defining leukocytosis.
Post-transfusion purpura (PTP) is an adverse reaction to a blood transfusion or platelet transfusion that occurs when the body produces alloantibodies to the introduced platelets' antigens. These alloantibodies destroy the patient's platelets leading to thrombocytopenia, a rapid decline in platelet count. PTP usually presents 5–12 days after transfusion, and is a potentially fatal condition.
PTP is rare, but usually occurs in women who have had multiple pregnancies or in people who have undergone previous transfusions. The precise mechanism leading to PTP is unknown, but it most commonly occurs in individuals whose platelets lack the HPA-1a antigen (old name: PL). The patient develops antibodies to the HPA-1a antigen leading to platelet destruction. In some cases, HPA-5b has also been implicated. It is unclear why alloantibodies attack the patient's own, as well as the introduced platelets. Probable explanation for this is that the recipient's platelet acquire the phenotype of donor's platelet by binding of the soluble antigens from the donor onto the recipient's platelet. It is usually self-limiting, but IVIG therapy is the primary treatment. Plasmapheresis is also an option for treatment.
Frequently, the thrombocytopenia is mild and the affected neonates remain largely asymptomatic. In these cases, therapeutic interventions are not indicated. In case of severe thrombocytopenia, the neonates may exhibit hemorrhagic complication at or a few hours after delivery. The most serious complication is intracranial hemorrhage, leading to death in approximately 10% or neurologic sequelae in 20% of cases.
Most people with ET are without symptoms referable to ET at the time of diagnosis, which is usually ultimately made after noting an elevated platelet level on a routine complete blood count (CBC). The most common symptoms are bleeding (due to dysfunctional platelets), blood clots (e.g., deep vein thrombosis or pulmonary embolism), headache, nausea, vomiting, abdominal pain, visual disturbances, dizziness, fainting, and numbness in the extremities; the most common signs are increased white blood cell count, reduced red blood cell count, and an enlarged spleen.
Characteristically, there is increased mucosal bleeding:
- menorrhagia
- easy bruising
- epistaxis
- gingival bleeding
- gastrointestinal bleeding
- postpartum bleeding
- increased bleeding post-operatively.
The bleeding tendency is variable but may be severe. Hemarthrosis, particularly spontaneous, is very rare, in contrast to the hemophilias.
Platelet numbers and morphology are normal. Platelet aggregation is normal with ristocetin, but impaired with other agonists such as ADP, thrombin, collagen or epinephrine.
In DIC, the underlying cause usually leads to symptoms and signs, and DIC is discovered on laboratory testing. The onset of DIC can be sudden, as in endotoxic shock or amniotic fluid embolism, or it may be insidious and chronic, as in cancer. DIC can lead to multiorgan failure and widespread bleeding.
Symptoms usually present from the period of birth to early childhood as: nose bleeds, bruising, and/or gum bleeding. Problems later in life may arise from anything that can cause internal bleeding such as: stomach ulcers, surgery, trauma, or menstruation. Abnormality of the abdomen, Epistaxis, Menorrhagia, Purpura, Thrombocytopenia, and prolonged bleeding time have also been listed as symptoms of various Giant Platelet Disorders.
Leukopenia () is a decrease in the number of white blood cells (leukocytes) found in the blood, which places individuals at increased risk of infection.
Neutropenia, a subtype of leukopenia, refers to a decrease in the number of circulating neutrophil granulocytes, the most abundant white blood cells. The terms "leukopenia" and "neutropenia" may occasionally be used interchangeably, as the neutrophil count is the most important indicator of infection risk. This should not be confused with agranulocytosis.
STEC-HUS occurs after ingestion of a strain of bacteria expressing Shiga toxin(s), usually types of "E. coli", that expresses verotoxin (also called Shiga-like toxin). "E. coli" can produce stx1 and/or stx2 Shiga toxins, the latter being more dangerous and a combination of both toxins in certain ratios is usually associated with HUS. These Shiga toxins bind GB3 receptors, globotriaosylceramide, which are present in renal tissue more than any other tissue and are also found in central nervous system neurons and other tissue. Children have more GB3 receptors than adults which may be why children are more susceptible to HUS. Cattle, swine, deer, and other mammals do not have GB3 receptors, but can be asymptomatic carriers of Shiga toxin-producing bacteria. Some humans can also be asymptomatic carriers. Once the bacteria colonizes, diarrhea followed by bloody diarrhea, hemorrhagic colitis, typically follows. HUS develops about 5–10 days after onset of diarrhea, with decreased urine output (oliguria), blood in the urine (hematuria), kidney failure, thrombocytopenia (low levels of platelets) and destruction of red blood cells (microangiopathic hemolytic anemia). Hypertension is common. In some cases, there are prominent neurologic changes.
Patients with HUS commonly exhibit the signs and symptoms of thrombotic microangiopathy (TMA), which can include abdominal pain, low platelet count, elevated lactate dehydrogenase LDH, a chemical released from damaged cells, and which is therefore a marker of cellular damage) decreased haptoglobin (indicative of the breakdown of red blood cells) anemia (low red blood cell count)/schistocytes (damaged red blood cells), elevated creatinine (a protein waste product generated by muscle metabolism and eliminated renally, proteinuria (indicative of kidney injury), confusion, fatigue, edema (swelling), nausea/vomiting, and diarrhea. Additionally, patients with aHUS typically present with an abrupt onset of systemic signs and symptoms such as acute kidney failure, hypertension (high blood pressure), myocardial infarction (heart attack), stroke, lung complications, pancreatitis (inflammation of the pancreas), liver necrosis (death of liver cells or tissue), encephalopathy (brain dysfunction), seizure, and coma. Failure of neurologic, cardiac, renal, and gastrointestinal (GI) organs, as well as death, can occur unpredictably at any time, either very quickly or following prolonged symptomatic or asymptomatic disease progression.
The most important differential diagnosis is disseminated intravascular coagulation, which is characterized with similar features but presence of a low platelet count and microcirculatory thrombosis. Antifibrinolytic treatments are contraindicated in patients with disseminated intravascular coagulation while they are useful in the treatment of primary fibrinogenolysis.
Giant platelet disorders can be further categorized:
- caused by auto-immune disorders, for example Immune thrombocytopenic purpura (ITP), and characterized by low platelet count, but high MPV (Mean-Platelet Volume).
- Caused by glycoprotein abnormalities: Bernard-Soulier syndrome, Velocardiofacial syndrome
- Caused by calpain defect: Montreal platelet syndrome
- Caused by alpha granules defect: Gray platelet syndrome
- Characterized by abnormal neutrophil inclusions: May-Hegglin anomaly, Sebastian syndrome
- With systemic manifestations: Hereditary macrothrombocytopenia with hearing loss, Epstein syndrome, Fechtner syndrome
- With no specific abnormalities: Mediterranean macrothrombocytopenia
- Harris platelet syndrome
Thrombotic thrombocytopenic purpura (TTP) is a rare disorder of the blood-coagulation system, causing extensive microscopic clots to form in the small blood vessels throughout the body, resulting in low platelet counts. These small blood clots, called thrombi, can damage many organs including the kidneys, heart, brain, and nervous system. In the era before effective treatment with plasma exchange, the fatality rate was about 90%. With plasma exchange, this has dropped to 10% at six months. Because the disease generally results from antibodies that activate the immune system to inhibit the ADAMTS13 enzyme, agents that suppress the immune system, such as glucocorticoids, rituximab, cyclophosphamide, vincristine, or ciclosporin, may also be used if a relapse or recurrence follows plasma exchange. Platelets are not transfused unless the patient has a life-threatening bleed, since the transfused platelets would also quickly be consumed by thrombi formation, leading to a minimal increase in circulating platelets.
Most cases of TTP arise from autoantibody-mediated inhibition of the enzyme ADAMTS13, a metalloprotease responsible for cleaving large multimers of von Willebrand factor (vWF) into smaller units. The increase in circulating multimers of vWF increases platelet adhesion to areas of endothelial injury, particularly where arterioles and capillaries meet, which in turn results in the formation of small platelet clots called thrombi. As platelets are used up in the formation of thrombi, this then leads to a decrease in the number of overall circulating platelets, which may then cause life-threatening bleeds. The reason why the antibodies form is generally unknown for most patients, though it can be associated with some medications and autoimmune diseases such as HIV and Lupus, as well as pregnancy.
A rarer form of TTP, called Upshaw–Schulman syndrome, or "Inherited TTP," results from an autosomal recessive gene that leads to ADAMTS13 dysfunction from the time of birth, resulting in persisting large vWF multimers, which in turn results in the formation of thrombi (small platelet clots).
Red blood cells passing the microscopic clots are subjected to shear stress, which damages their membranes, leading to rupture of red blood cells within blood vessels, which in turn leads to anaemia and schistocyte formation. The presence of these blood clots in the small blood vessels reduces blood flow to organs resulting in cellular injury and end organ damage. Current therapy is based on support and plasmapheresis to reduce circulating antibodies against ADAMTS13 and replenish blood levels of the enzyme.
The clinical hallmark is haemorrhagic bullae on the mucosa of the oronasopharynx. Haemorrhage from ruptured bullae, epistaxis or gastrointestinal bleeding is severe and may cause shock and death.
Onyalai is an acute disease that results in the development of hemorrhagic lesions on oral, nasal, and subconjunctival mucous membranes and skin, including on the soles of the feet. The patient initially is not in distress, which may result in a delay of diagnosis. As the disease progresses, hematuria, melena and menorrhagia may develop. Bleeding usually persists for approximately eight days, and may recur. Approximately 80 percent of cases will develop chronic thrombocytopenia. Periodic episodes of acute hemorrhage are possible and may be severe, leading to shock and death.
Heparin may be used for both prevention and the treatment of thrombosis. It exists in two main forms: an "unfractionated" form that can be injected under the skin or through an intravenous infusion, and a "low molecular weight" form that is generally given subcutaneously (administered under the skin). Commonly used low molecular weight heparins are enoxaparin, dalteparin, nadroparin and tinzaparin.
In HIT, the platelet count in the blood falls below the normal range, a condition called thrombocytopenia. However, it is generally not low enough to lead to an increased risk of bleeding. Most people with HIT will therefore not experience any symptoms. Typically the platelet count will fall 5–14 days after heparin is first given; if someone has received heparin in the previous three months, the fall in platelet count may occur sooner, sometimes within a day.
The most common symptom of HIT is enlargement or extension of a previously diagnosed blood clot, or the development of a new blood clot elsewhere in the body. This may take the form of clots either in arteries or veins, causing arterial or venous thrombosis, respectively. Examples of arterial thrombosis are stroke, myocardial infarction ("heart attack"), and acute leg ischemia. Venous thrombosis may occur in the leg or arm in the form of deep vein thrombosis (DVT) and in the lung in the form of a pulmonary embolism (PE); the latter usually originate in the leg but migrate to the lung.
In those receiving heparin through an intravenous infusion, a complex of symptoms ("systemic reaction") may occur when the infusion is started. These include fever, chills, high blood pressure, a fast heart rate, shortness of breath, and chest pain. This happens in about a quarter of people with HIT. Others may develop a skin rash consisting of red spots.
Neonatal alloimmune thrombocytopenia (NAITP, NAIT, NATP or NAT) is a disease that affects babies in which the platelet count is decreased. Platelet antigens are inherited from both mother and father. is caused by antibodies specific for platelet antigens inherited from the father but which are absent in the mother. Fetomaternal transfusions (or fetomaternal hemorrhage) results in the recognition of these antigens by the mother's immune system as non-self, with the subsequent generation of allo-reactive antibodies which cross the placenta. , hence, is caused by transplacental passage of maternal platelet-specific alloantibody and rarely human leukocyte antigen () allo-antibodies (which are expressed by platelets) to fetuses whose platelets express the corresponding antigens. occurs in somewhere between 1/800 and 1/5000 live births. More recent studies of seem to indicate that it occurs in around 1/600 live births in the Caucasian population.