Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Many people with long QT syndrome have no signs or symptoms.
Some people may experience the following symptoms:
- Fainting (or syncope). This may occur when the patient is emotionally or physically stressed. It is unusual in QT syndrome to have any signs before the person actually faints.
- Seizures
- Sudden death. If there is sudden death, and doctors suspect long QT syndrome as the cause, they may recommend that the family members of the deceased get tested for the disease.
A triad of hypokalemic periodic paralysis, potentially fatal cardiac ventricular ectopy and characteristic physical features is known as Anderson-Tawil Syndrome. It affects the heart, symptoms are a disruption in the rhythm of the heart's lower chambers (ventricular arrhythmia) in addition to the symptoms of long QT syndrome. There are also physical abnormalities associated with Andersen–Tawil syndrome, these typically affect the head, face, and limbs. These features often include an unusually small lower jaw (micrognathia), low-set ears, and an abnormal curvature of the fingers called clinodactyly. Furthermore it causes symptoms which are similar to Long QT syndrome, which Andersen's is also known as. Long QT syndrome, a hereditary disorder that usually affects children or young adults, slows the signal that causes the ventricles to contract. Another electrical signal problem, atrial flutter, happens when a single electrical wave circulates rapidly in the atrium, causing a very fast but steady heartbeat. Heart block involves weak or improperly conducted electrical signals from the upper chambers that can't make it to the lower chambers, causing the heart to beat too slowly. These conditions can put you at risk for cardiac arrest. Treatment might involve medication, ablation, or an implanted device to correct the misfiring, such as a pacemaker or defibrillator. Here are some common physical abnormalities, but keep in mind these do vary (in severity) between each patient:
Some more severe issues can be caused via the potassium channelopathy. These include paralysis (mostly temporary and can last from several seconds to several minutes), inability to perform long distance/interval exercises and sudden exhaustion- although this can be a sign of cardiac arrhythmia- which should be immeditaley checked out by a GP, whether you have been diagnosed with ATS or not.
Romano–Ward syndrome presents the following in an affected individual:
- Ventricular fibrillation
- Syncope
- Torsade de pointes
- Abnormality of ear
Long QT syndrome (LQTS) is a condition which affects repolarization of the heart after a heartbeat. This results in an increased risk of an irregular heartbeat which can result in fainting, drowning, or sudden death. These episodes can be triggered by exercise or stress. Other associated symptoms may include hearing loss.
Long QT syndrome may be present at birth or develop later in life. The inherited form may occur by itself or as part of larger genetic disorder. Onset later in life may result from certain medications, low blood potassium, low blood calcium, or heart failure. Medications that are implicated include certain antiarrhythmic, antibiotics, and antipsychotics. Diagnosis is based on an electrocardiogram (EKG) finding a corrected QT interval of greater than 440 to 500 milliseconds together with clinical findings.
Management may include avoiding strenuous exercise, getting sufficient potassium in the diet, the use of beta blockers, or a implantable cardiac defibrillator. Without treatment there is a 50%, 10 year risk of death, for the inherited versions. With treatment this decreases to less than 1% over 20 years.
Long QT syndrome is estimated to affect 1 in 7,000 people. Females are affected more often than males. Most people with the condition develop symptoms before they are 40 years old. It is a relatively common cause of sudden death along with Brugada syndrome and arrhythmogenic right ventricular dysplasia. In the United States it results in about 3,500 deaths a year. The condition was first clearly described in 1957.
Andersen–Tawil syndrome, also called Andersen syndrome and Long QT syndrome 7, is a form of long QT syndrome. It is a rare genetic disorder, and is inherited in an autosomal dominant pattern and predisposes patients to cardiac arrhythmias. Jervell and Lange-Nielsen Syndrome is a similar disorder which is also associated with sensorineural hearing loss. It was first described by Ellen Damgaard Andersen.
The most striking sign of Timothy syndrome is the co-occurrence of both syndactyly (~0.03% of births) and long QT syndrome (1% per year) in a single patient. Other common symptoms of Timothy syndrome are cardiac arrhythmia (94%), heart malformations (59%), autism or an autism spectrum disorder (80% who survive long enough for evaluation). Facial dysmorphologies such as flattened noses also occur in approximately half of patients. Children with this disorder have small teeth which, due to poor enamel coating, are prone to dental cavities and often require removal. The average age of death due to complications of these symptoms is 2.5 years.
Atypical Timothy syndrome has largely the same symptoms as the classical form. Differences in the atypical form are the lack of syndactyly, the presence of musculoskeletal problems (particularly hyperflexible joints), and atrial fibrillation. Patients with atypical Timothy syndrome also have more facial deformities, including protruding foreheads and tongues. Finally, one patient with atypical Timothy syndrome had a body development discrepancy wherein her upper body was normally developed (that of a 6-year-old) while her lower half resembled a 2- or 3-year-old.
Children with Timothy syndrome tend to be born via caesarean section due to fetal distress.
Romano–Ward syndrome is the major variant of "long QT syndrome". It is a condition that causes a disruption of the heart's normal rhythm. This disorder is a form of long QT syndrome, which is a heart condition that causes the cardiac muscle to take longer than usual to recharge between beats; if untreated, the irregular heartbeats can lead to fainting, seizures, or sudden death
Short QT syndrome is a genetic disease of the electrical system of the heart. It consists of a constellation of signs and symptoms, consisting of a short QT interval on an EKG (≤ 300 ms) that does not significantly change with heart rate, tall and peaked T waves, and a structurally normal heart. Short QT syndrome appears to be inherited in an autosomal dominant pattern, and a few affected families have been identified.
Timothy syndrome is a rare autosomal dominant disorder characterized by physical malformations, as well as neurological and developmental defects, including heart QT-prolongation, heart arrhythmias, structural heart defects, syndactyly (webbing of fingers and toes) and autism spectrum disorders.
Timothy syndrome often ends in early childhood death.
Jervell and Lange-Nielsen syndrome (JLNS) is a type of long QT syndrome associated with severe, bilateral sensorineural hearing loss. Long QT syndrome causes the cardiac muscle to take longer than usual to recharge between beats. If untreated, the irregular heartbeats, called arrhythmias, can lead to fainting, seizures, or sudden death. It was first described by Anton Jervell and Fred Lange-Nielsen in 1957.
Brugada syndrome (BrS) is a genetic condition that results in abnormal electrical activity within the heart, increasing the risk of sudden cardiac death. Those affected may have episodes of passing out. Typically this occurs when a person is at rest.
It is often inherited from a person's parent with about a quarter of people having a family history. Some cases may be due to a new mutation or certain medications. The abnormal heart rhythms can be triggered by a fever or increased vagal tone. Diagnosis is typically by electrocardiogram (ECG), however, the abnormalities may not be consistently present.
Treatment may be with an implantable cardioverter defibrillator (ICD). Isoproterenol may be used in those who are acutely unstable. In those without symptoms the risk of death is much lower, and how to treat this group is unclear. Testing people's family members may be recommended.
Between 1 and 30 per 10,000 people are affected. Onset of symptoms is usually in adulthood. It is more common in people of Asian descent. Males are more commonly affected than females. It is named after the Spanish cardiologists Pedro and Josep Brugada who described the condition in 1992. Their brother Ramon Brugada described the underlying genetics in 1998.
Some individuals with short QT syndrome frequently complain of palpitations and may have unexplained syncope (loss of consciousness). Mutations in the "KCNH2", "KCNJ2", and "KCNQ1" genes cause short QT syndrome. These genes provide instructions for making proteins that act as channels across the cell membrane. These channels transport positively charged atoms (ions) of potassium into and out of cells. In cardiac muscle, these ion channels play critical roles in maintaining the heart's normal rhythm. Mutations in the "KCNH2", "KCNJ2", or "KCNQ1" gene increase the activity of the channels, which changes the flow of potassium ions between cells. This disruption in ion transport alters the way the heart beats, leading to the abnormal heart rhythm characteristic of short QT syndrome. Short QT syndrome appears to have an autosomal dominant pattern of inheritance.
Short QT syndrome is associated with an increased risk of sudden cardiac death, most likely due to ventricular fibrillation.
Genetic testing for Brugada syndrome is clinically available and may help confirm a diagnosis, as well as differentiate between relatives who are at risk for the disease and those who are not. Some symptoms when pinpointing this disease include fainting, irregular heartbeats, and chaotic heartbeats. However, just detecting the irregular heartbeat may be a sign of another disease, so the doctor must detect another symptom as well.
JLNS patients with "KCNQ1" mutations are particularly prone to pathological lengthening of the QT interval, which predisposes them to episodes of "torsades de pointes" and sudden cardiac death. In this context, if the patient has had syncopal episodes or history of cardiac arrest, an implantable cardiac defibrillator should be used in addition to a beta blocker such as propranolol.
Torsades de pointes or torsade depointes (TdP or simply torsade(s)) (, translated as "twisting of the points"), is a specific type of abnormal heart rhythm that can lead to sudden cardiac death. It is a polymorphic ventricular tachycardia that exhibits distinct characteristics on the electrocardiogram (ECG). It was described by Dessertenne in 1966. Prolongation of the QT interval can increase a person's risk of developing this abnormal heart rhythm.
Afterdepolarizations are abnormal depolarizations of cardiac myocytes that interrupt phase 2, phase 3, or phase 4 of the cardiac action potential in the electrical conduction system of the heart. Afterdepolarizations may lead to cardiac arrhythmias.
One of the most prominent and visible symptoms of Nevo Syndrome is the prenatal overgrowth, which continues into the infant and toddler stage. This excessive weight gain can be attributed to the low concentrations of growth hormone and insulin growth factor that are normally present to regulate weight gain. Other common symptoms associated with Nevo Syndrome are the outward wrist-drop, edema in hands and feet, undescended testes, low-set ears, hypotonia, the presence of low muscle tone in children, and long tapered fingers, and a highly arched palate.
The ECG tracing in torsades demonstrates a "polymorphic ventricular tachycardia" with a characteristic illusion of a twisting of the QRS complex around the isoelectric baseline (peaks, which are at first pointing up, appear to be pointing down for subsequent "beats" when looking at ECG traces of the "heartbeat"). It is hemodynamically unstable and causes a sudden drop in arterial blood pressure, leading to dizziness and fainting. Depending on their cause, most individual episodes of torsades de pointes revert to normal sinus rhythm within a few seconds; however, episodes may also persist and possibly degenerate into ventricular fibrillation, leading to sudden death in the absence of prompt medical intervention. Torsades de pointes is associated with long QT syndrome, a condition whereby prolonged QT intervals are visible on an ECG. Long QT intervals predispose the patient to an , wherein the R-wave, representing ventricular depolarization, occurs during the relative refractory period at the end of repolarization (represented by the latter half of the T-wave). An R-on-T can initiate torsades. Sometimes, pathologic T-U waves may be seen in the ECG before the initiation of torsades.
A "short-coupled variant of torsade de pointes", which presents without long QT syndrome, was also described in 1994 as having the following characteristics:
- Drastic rotation of the heart's electrical axis
- Prolonged QT interval (LQTS) - may not be present in the short-coupled variant of torsade de pointes
- Preceded by long and short RR-intervals - not present in the short-coupled variant of torsade de pointes
- Triggered by a premature ventricular contraction (R-on-T PVC)
Ventricular fibrillation is a cause of cardiac arrest and sudden cardiac death. The ventricular muscle twitches randomly rather than contracting in a co-ordinated fashion (from the apex of the heart to the outflow of the ventricles), and so the ventricles fail to pump blood around the body - because of this, it is classified as a cardiac arrest rhythm, and patients in V-fib should be treated with cardiopulmonary resuscitation and prompt defibrillation. Left untreated, ventricular fibrillation is rapidly fatal as the vital organs of the body, including the heart, are starved of oxygen, and as a result patients in this rhythm will not be conscious or responsive to stimuli. Prior to cardiac arrest, patients may complain of varying symptoms depending on the underlying cause. Patients may exhibit signs of agonal breathing, which to the layperson can look like normal spontaneous breathing, but it is in fact a sign of hypoperfusion of the brainstem.
It has an appearance on electrocardiography of irregular electrical activity with no discernable pattern. It may be described as 'coarse' or 'fine' depending on its amplitude, or as progressing from coarse to fine V-fib. Coarse V-fib may be more responsive to defibrillation, while fine V-fib can mimic the appearance of asystole on a defibrillator or cardiac monitor set to a low gain. Some clinicians may attempt to defibrillate fine V-fib in the hope that it can be reverted to a cardiac rhythm compatible with life, whereas others will deliver CPR and sometimes drugs as described in the advanced cardiac life support protocols in an attempt to increase its amplitude and the odds of successful defibrillation.
Drug-induced QT prolongation is seen with a QT interval above 0.45 ms on the ECG and is usually a result of treatment by anti-arrhythmic drugs, such as amiodarone and sotalol, or a number of other drugs that have been reported to cause this problem (e.g., cisapride). Some antipsychotic drugs, such as haloperidol and ziprasidone, have a prolonged QT interval as a rare side-effect. Antihistamines, erythromycin, and ciprofloxacin may also cause drug-induced LQT. Genetic mutations may make one more susceptible to drug-induced LQT. It is associated with hypokalaemia, hypocalcaemia and hypothermia and may lead to torsades de pointes.
List of drugs associated with prolonging the QT interval that may or may not have FDA warnings.
- Antiarrhythmic agents
- Type I
- Quinidine
- Disopyramide
- Procainamide
- Type III
- Sotalol
- Amiodarone
- Dofetilide
- Antibiotics
- Macrolides
- Erythromycin
- Clarithromycin
- Azithromycin
- Quinolones
- Levofloxacin
- Moxifloxacin
- Other
- Bedaquiline
- Delamanid
- Pentamidine
- Antifungals
- Fluconazole
- Ketoconazole
- Antihistamine
- Astemizole
- Hydroxyzine
- Mizolastine
- Terfenadine
- Antimalarials
- Chloroquine
- Halofantrine
- Antiretrovirals
- Lopinavir
- Ritonavir
- Saquinavir
- Chemotherapy
- Vandetanib
- Diuretics
- Furosemide
- Gastroprokinetic
- Cisapride
- Opioids
- Apomorphine
- Methadone
- Psychoactive drug
- Amitriptyline
- Asenapine
- Citalopram
- Cocaine
- Escitalopram
- Fluphenazine
- Haloperidol (IV higher risk than PO or IM)
- Iloperidone
- Lurasidone
- Olanzapine
- Paliperidone
- Pimozide
- Quetiapine
- Risperidone
- Thioridazine
- Ziprasidone
- Selective estrogen receptor modulators
- Tamoxifen
- Toremifene
Ventricular fibrillation (V-fib or VF) is when the heart quivers instead of pumping due to disorganized electrical activity in the ventricles. It is a type of cardiac arrhythmia. Ventricular fibrillation results in cardiac arrest with loss of consciousness and no pulse. This is followed by death in the absence of treatment. Ventricular fibrillation is found initially in about 10% of people in cardiac arrest.
Ventricular fibrillation can occur due to coronary heart disease, valvular heart disease, cardiomyopathy, Brugada syndrome, long QT syndrome, electric shock, or intracranial hemorrhage. Diagnosis is by an electrocardiogram (ECG) showing irregular unformed QRS complexes without any clear P waves. An important differential diagnosis is torsades de pointes.
Treatment is with cardiopulmonary resuscitation (CPR) and defibrillation. Biphasic defibrillation may be better than monophasic. The medication epinephrine or amiodarone may be given if initial treatments are not effective. Rates of survival among those who are out of hospital when the arrhythmia is detected is about 17% while in hospital it is about 46%.
The clinical phenotype of 3q29 microdeletion syndrome is variable. Clinical features can include mild/moderate mental retardation with mildly dysmorphic facial features (long and narrow face, short philtrum and a high nasal bridge). Of the 6 reported patients, additional features including autism, ataxia, chest-wall deformity and long, tapering fingers were found in at least two patients. A review of 14 children with insterstitial deletions of 3q29, found 11 who had the common recurrent 1.6Mb deletion and displayed mental retardation and microcephaly.
The variability of phenotype is underscored by the report on a 6 and 9/12 year-old male patient with a de novo chromosome 3q29 microdeletion identified by BAC array comparative genomic hybridization assay (aCGH), with accompanying normal 46,XY high-resolution chromosome analysis. The patient has language-based learning disabilities and behavioral features consistent with diagnoses of autism and attention deficit hyperactivity disorder (ADHD) of the inattentive type. He also displays some other features previously associated with chromosome 3q29 microdeletion such as an elongated face, long fingers, and joint laxity. Most notably the patient, per formal IQ testing, was not found to have frank mental retardation as has been previously reported among patients with chromosome 3q29 terminal deletion, but rather the patient has demonstrated an average full-scale IQ result. This report further expands the phenotypic spectrum to include the possibility of normal intelligence as corroborated by formal, longitudinal psycho-educational testing.
The presence of two homologous low copy repeats either side of the deletion break-point suggests that non-allelic homologous recombination is the likely mechanism underlying this syndrome.
Nevo Syndrome is an autosomal recessive disorder. Most times in which a child is afflicted with Nevo Syndrome, both their parents are of average height and weight. It is only until after birth when the characteristic physical traits associated with disease are manifested, and the disorder is actually diagnosed. One study showed that despite the increased growth rates, the patient was completely healthy up until age 6, when he was admitted into the hospital. Nevo syndrome is usually associated with early childhood fatality. Children with Nevo Syndrome have a high occurrence of death due to cardiac arrest because their developing hearts cannot keep up with their overgrown body.
Hemangiomas associated with PHACE Syndrome are usually small or not visible at birth, but are easier to see during the first days to weeks of life. They can grow rapidly. Hemangiomas linked with PHACE Syndrome tend to cover a large area of the face, head or neck, either as one lesion or as many single lesions.
Posterior fossa malformations–hemangiomas–arterial anomalies–cardiac defects–eye abnormalities–sternal cleft and supraumbilical raphe syndrome (also known as "PHACES Syndrome") is a cutaneous condition characterized by multiple congenital abnormalities.
PHACE syndrome should be considered in infants with large plaque-type facial hemangiomas. Children presenting with this dermatologic manifestation should receive careful ophthalmologic, cardiac, and neurologic assessment.
According to one study in infants with large hemangiomas, one-third have extracutaneous manifestations consistent with the diagnosis of PHACE syndrome. The most common are cerebrovascular and cardiovascular anomalies.