Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Many people with long QT syndrome have no signs or symptoms.
Some people may experience the following symptoms:
- Fainting (or syncope). This may occur when the patient is emotionally or physically stressed. It is unusual in QT syndrome to have any signs before the person actually faints.
- Seizures
- Sudden death. If there is sudden death, and doctors suspect long QT syndrome as the cause, they may recommend that the family members of the deceased get tested for the disease.
A triad of hypokalemic periodic paralysis, potentially fatal cardiac ventricular ectopy and characteristic physical features is known as Anderson-Tawil Syndrome. It affects the heart, symptoms are a disruption in the rhythm of the heart's lower chambers (ventricular arrhythmia) in addition to the symptoms of long QT syndrome. There are also physical abnormalities associated with Andersen–Tawil syndrome, these typically affect the head, face, and limbs. These features often include an unusually small lower jaw (micrognathia), low-set ears, and an abnormal curvature of the fingers called clinodactyly. Furthermore it causes symptoms which are similar to Long QT syndrome, which Andersen's is also known as. Long QT syndrome, a hereditary disorder that usually affects children or young adults, slows the signal that causes the ventricles to contract. Another electrical signal problem, atrial flutter, happens when a single electrical wave circulates rapidly in the atrium, causing a very fast but steady heartbeat. Heart block involves weak or improperly conducted electrical signals from the upper chambers that can't make it to the lower chambers, causing the heart to beat too slowly. These conditions can put you at risk for cardiac arrest. Treatment might involve medication, ablation, or an implanted device to correct the misfiring, such as a pacemaker or defibrillator. Here are some common physical abnormalities, but keep in mind these do vary (in severity) between each patient:
Some more severe issues can be caused via the potassium channelopathy. These include paralysis (mostly temporary and can last from several seconds to several minutes), inability to perform long distance/interval exercises and sudden exhaustion- although this can be a sign of cardiac arrhythmia- which should be immeditaley checked out by a GP, whether you have been diagnosed with ATS or not.
Romano–Ward syndrome presents the following in an affected individual:
- Ventricular fibrillation
- Syncope
- Torsade de pointes
- Abnormality of ear
Long QT syndrome (LQTS) is a condition which affects repolarization of the heart after a heartbeat. This results in an increased risk of an irregular heartbeat which can result in fainting, drowning, or sudden death. These episodes can be triggered by exercise or stress. Other associated symptoms may include hearing loss.
Long QT syndrome may be present at birth or develop later in life. The inherited form may occur by itself or as part of larger genetic disorder. Onset later in life may result from certain medications, low blood potassium, low blood calcium, or heart failure. Medications that are implicated include certain antiarrhythmic, antibiotics, and antipsychotics. Diagnosis is based on an electrocardiogram (EKG) finding a corrected QT interval of greater than 440 to 500 milliseconds together with clinical findings.
Management may include avoiding strenuous exercise, getting sufficient potassium in the diet, the use of beta blockers, or a implantable cardiac defibrillator. Without treatment there is a 50%, 10 year risk of death, for the inherited versions. With treatment this decreases to less than 1% over 20 years.
Long QT syndrome is estimated to affect 1 in 7,000 people. Females are affected more often than males. Most people with the condition develop symptoms before they are 40 years old. It is a relatively common cause of sudden death along with Brugada syndrome and arrhythmogenic right ventricular dysplasia. In the United States it results in about 3,500 deaths a year. The condition was first clearly described in 1957.
Andersen–Tawil syndrome, also called Andersen syndrome and Long QT syndrome 7, is a form of long QT syndrome. It is a rare genetic disorder, and is inherited in an autosomal dominant pattern and predisposes patients to cardiac arrhythmias. Jervell and Lange-Nielsen Syndrome is a similar disorder which is also associated with sensorineural hearing loss. It was first described by Ellen Damgaard Andersen.
Romano–Ward syndrome is the major variant of "long QT syndrome". It is a condition that causes a disruption of the heart's normal rhythm. This disorder is a form of long QT syndrome, which is a heart condition that causes the cardiac muscle to take longer than usual to recharge between beats; if untreated, the irregular heartbeats can lead to fainting, seizures, or sudden death
The most striking sign of Timothy syndrome is the co-occurrence of both syndactyly (~0.03% of births) and long QT syndrome (1% per year) in a single patient. Other common symptoms of Timothy syndrome are cardiac arrhythmia (94%), heart malformations (59%), autism or an autism spectrum disorder (80% who survive long enough for evaluation). Facial dysmorphologies such as flattened noses also occur in approximately half of patients. Children with this disorder have small teeth which, due to poor enamel coating, are prone to dental cavities and often require removal. The average age of death due to complications of these symptoms is 2.5 years.
Atypical Timothy syndrome has largely the same symptoms as the classical form. Differences in the atypical form are the lack of syndactyly, the presence of musculoskeletal problems (particularly hyperflexible joints), and atrial fibrillation. Patients with atypical Timothy syndrome also have more facial deformities, including protruding foreheads and tongues. Finally, one patient with atypical Timothy syndrome had a body development discrepancy wherein her upper body was normally developed (that of a 6-year-old) while her lower half resembled a 2- or 3-year-old.
Children with Timothy syndrome tend to be born via caesarean section due to fetal distress.
Short QT syndrome is a genetic disease of the electrical system of the heart. It consists of a constellation of signs and symptoms, consisting of a short QT interval on an EKG (≤ 300 ms) that does not significantly change with heart rate, tall and peaked T waves, and a structurally normal heart. Short QT syndrome appears to be inherited in an autosomal dominant pattern, and a few affected families have been identified.
Timothy syndrome is a rare autosomal dominant disorder characterized by physical malformations, as well as neurological and developmental defects, including heart QT-prolongation, heart arrhythmias, structural heart defects, syndactyly (webbing of fingers and toes) and autism spectrum disorders.
Timothy syndrome often ends in early childhood death.
Jervell and Lange-Nielsen syndrome (JLNS) is a type of long QT syndrome associated with severe, bilateral sensorineural hearing loss. Long QT syndrome causes the cardiac muscle to take longer than usual to recharge between beats. If untreated, the irregular heartbeats, called arrhythmias, can lead to fainting, seizures, or sudden death. It was first described by Anton Jervell and Fred Lange-Nielsen in 1957.
Brugada syndrome (BrS) is a genetic condition that results in abnormal electrical activity within the heart, increasing the risk of sudden cardiac death. Those affected may have episodes of passing out. Typically this occurs when a person is at rest.
It is often inherited from a person's parent with about a quarter of people having a family history. Some cases may be due to a new mutation or certain medications. The abnormal heart rhythms can be triggered by a fever or increased vagal tone. Diagnosis is typically by electrocardiogram (ECG), however, the abnormalities may not be consistently present.
Treatment may be with an implantable cardioverter defibrillator (ICD). Isoproterenol may be used in those who are acutely unstable. In those without symptoms the risk of death is much lower, and how to treat this group is unclear. Testing people's family members may be recommended.
Between 1 and 30 per 10,000 people are affected. Onset of symptoms is usually in adulthood. It is more common in people of Asian descent. Males are more commonly affected than females. It is named after the Spanish cardiologists Pedro and Josep Brugada who described the condition in 1992. Their brother Ramon Brugada described the underlying genetics in 1998.
Some individuals with short QT syndrome frequently complain of palpitations and may have unexplained syncope (loss of consciousness). Mutations in the "KCNH2", "KCNJ2", and "KCNQ1" genes cause short QT syndrome. These genes provide instructions for making proteins that act as channels across the cell membrane. These channels transport positively charged atoms (ions) of potassium into and out of cells. In cardiac muscle, these ion channels play critical roles in maintaining the heart's normal rhythm. Mutations in the "KCNH2", "KCNJ2", or "KCNQ1" gene increase the activity of the channels, which changes the flow of potassium ions between cells. This disruption in ion transport alters the way the heart beats, leading to the abnormal heart rhythm characteristic of short QT syndrome. Short QT syndrome appears to have an autosomal dominant pattern of inheritance.
Short QT syndrome is associated with an increased risk of sudden cardiac death, most likely due to ventricular fibrillation.
Genetic testing for Brugada syndrome is clinically available and may help confirm a diagnosis, as well as differentiate between relatives who are at risk for the disease and those who are not. Some symptoms when pinpointing this disease include fainting, irregular heartbeats, and chaotic heartbeats. However, just detecting the irregular heartbeat may be a sign of another disease, so the doctor must detect another symptom as well.
JLNS patients with "KCNQ1" mutations are particularly prone to pathological lengthening of the QT interval, which predisposes them to episodes of "torsades de pointes" and sudden cardiac death. In this context, if the patient has had syncopal episodes or history of cardiac arrest, an implantable cardiac defibrillator should be used in addition to a beta blocker such as propranolol.
Torsades de pointes or torsade depointes (TdP or simply torsade(s)) (, translated as "twisting of the points"), is a specific type of abnormal heart rhythm that can lead to sudden cardiac death. It is a polymorphic ventricular tachycardia that exhibits distinct characteristics on the electrocardiogram (ECG). It was described by Dessertenne in 1966. Prolongation of the QT interval can increase a person's risk of developing this abnormal heart rhythm.
The most common symptoms are intellectual disability and recurrent seizures developing in infancy or early childhood. Typically the seizures are resistant to treatment with anti-epileptic drugs. Other symptoms may include:
- Microcephaly
- Lymphedema
- Facial abnormalities
- Immune deficiencies
- Abnormalities of retina
- Slow growth
- Short stature
Drug-induced QT prolongation is seen with a QT interval above 0.45 ms on the ECG and is usually a result of treatment by anti-arrhythmic drugs, such as amiodarone and sotalol, or a number of other drugs that have been reported to cause this problem (e.g., cisapride). Some antipsychotic drugs, such as haloperidol and ziprasidone, have a prolonged QT interval as a rare side-effect. Antihistamines, erythromycin, and ciprofloxacin may also cause drug-induced LQT. Genetic mutations may make one more susceptible to drug-induced LQT. It is associated with hypokalaemia, hypocalcaemia and hypothermia and may lead to torsades de pointes.
List of drugs associated with prolonging the QT interval that may or may not have FDA warnings.
- Antiarrhythmic agents
- Type I
- Quinidine
- Disopyramide
- Procainamide
- Type III
- Sotalol
- Amiodarone
- Dofetilide
- Antibiotics
- Macrolides
- Erythromycin
- Clarithromycin
- Azithromycin
- Quinolones
- Levofloxacin
- Moxifloxacin
- Other
- Bedaquiline
- Delamanid
- Pentamidine
- Antifungals
- Fluconazole
- Ketoconazole
- Antihistamine
- Astemizole
- Hydroxyzine
- Mizolastine
- Terfenadine
- Antimalarials
- Chloroquine
- Halofantrine
- Antiretrovirals
- Lopinavir
- Ritonavir
- Saquinavir
- Chemotherapy
- Vandetanib
- Diuretics
- Furosemide
- Gastroprokinetic
- Cisapride
- Opioids
- Apomorphine
- Methadone
- Psychoactive drug
- Amitriptyline
- Asenapine
- Citalopram
- Cocaine
- Escitalopram
- Fluphenazine
- Haloperidol (IV higher risk than PO or IM)
- Iloperidone
- Lurasidone
- Olanzapine
- Paliperidone
- Pimozide
- Quetiapine
- Risperidone
- Thioridazine
- Ziprasidone
- Selective estrogen receptor modulators
- Tamoxifen
- Toremifene
These are pleomorphic and include
- dolichocephaly (with or without sagittal suture synostosis)
- microcephaly
- pre- and postnatal growth retardation
- brachydactyly
- narrow thorax
- rhizomelic dwarfism
- epicanthal folds
- hypodontia and/or microdontia
- sparse, slow-growing, hyperpigmented, fine hair
- nail dysplasia
- hypohydrosis
- chronic renal failure
- heart defects
- liver fibrosis
- visual deficits
- photophobia
- hypoplasia of the posterior corpus callosum
- aberrant calcium homeostasis
Electroretinography shows gross abnormalities.
Two fetuses of 19 and 23 weeks gestation have also been reported. They showed acromesomelic shortening, craniofacial characteristics with absence of craniosynostosis, small kidneys with tubular and glomerular microscopic cysts, persistent ductal plate with portal fibrosis in the liver, small adrenals, an enlarged cisterna magna and a posterior fossa cyst.
Facial features found in this syndrome include
- dolichocephaly
- hypertelorism
- ptosis
- microretrognathia
- high arched palate
- long flat philtrum
- low set ears
Non facial features of this syndrome include
- hyperextensibility
- hypotonia
- lateral meningoceles
The lateral meningocoles are a common finding in this syndrome. They may be associated with neurological abnormalities and result in bladder dysfunction and neuropathy.
Afterdepolarizations are abnormal depolarizations of cardiac myocytes that interrupt phase 2, phase 3, or phase 4 of the cardiac action potential in the electrical conduction system of the heart. Afterdepolarizations may lead to cardiac arrhythmias.
The clinical phenotype of 3q29 microdeletion syndrome is variable. Clinical features can include mild/moderate mental retardation with mildly dysmorphic facial features (long and narrow face, short philtrum and a high nasal bridge). Of the 6 reported patients, additional features including autism, ataxia, chest-wall deformity and long, tapering fingers were found in at least two patients. A review of 14 children with insterstitial deletions of 3q29, found 11 who had the common recurrent 1.6Mb deletion and displayed mental retardation and microcephaly.
The variability of phenotype is underscored by the report on a 6 and 9/12 year-old male patient with a de novo chromosome 3q29 microdeletion identified by BAC array comparative genomic hybridization assay (aCGH), with accompanying normal 46,XY high-resolution chromosome analysis. The patient has language-based learning disabilities and behavioral features consistent with diagnoses of autism and attention deficit hyperactivity disorder (ADHD) of the inattentive type. He also displays some other features previously associated with chromosome 3q29 microdeletion such as an elongated face, long fingers, and joint laxity. Most notably the patient, per formal IQ testing, was not found to have frank mental retardation as has been previously reported among patients with chromosome 3q29 terminal deletion, but rather the patient has demonstrated an average full-scale IQ result. This report further expands the phenotypic spectrum to include the possibility of normal intelligence as corroborated by formal, longitudinal psycho-educational testing.
The presence of two homologous low copy repeats either side of the deletion break-point suggests that non-allelic homologous recombination is the likely mechanism underlying this syndrome.
Ring chromosome 14 syndrome is a very rare human chromosome abnormality. It occurs when one or both of the telomeres that mark the ends of chromosome 14 are lost allowing the now uncapped ends to fuse together forming a ring chromosome. It causes a number of serious health issues.
Sensenbrenner syndrome (OMIM #218330) is a rare (less than 20 cases reported by 2010) multisystem disease first described in 1975. It is inherited in an autosomal recessive fashion, and a number of genes appear to be responsible. Three genes responsible have been identified: intraflagellar transport (IFT)122 (WDR10), IFT43 — a subunit of the IFT complex A machinery of primary cilia, and WDR35 (IFT121: TULP4)
It is also known as Sensenbrenner–Dorst–Owens syndrome, Levin Syndrome I and cranioectodermal dysplasia (CED)
The ECG tracing in torsades demonstrates a "polymorphic ventricular tachycardia" with a characteristic illusion of a twisting of the QRS complex around the isoelectric baseline (peaks, which are at first pointing up, appear to be pointing down for subsequent "beats" when looking at ECG traces of the "heartbeat"). It is hemodynamically unstable and causes a sudden drop in arterial blood pressure, leading to dizziness and fainting. Depending on their cause, most individual episodes of torsades de pointes revert to normal sinus rhythm within a few seconds; however, episodes may also persist and possibly degenerate into ventricular fibrillation, leading to sudden death in the absence of prompt medical intervention. Torsades de pointes is associated with long QT syndrome, a condition whereby prolonged QT intervals are visible on an ECG. Long QT intervals predispose the patient to an , wherein the R-wave, representing ventricular depolarization, occurs during the relative refractory period at the end of repolarization (represented by the latter half of the T-wave). An R-on-T can initiate torsades. Sometimes, pathologic T-U waves may be seen in the ECG before the initiation of torsades.
A "short-coupled variant of torsade de pointes", which presents without long QT syndrome, was also described in 1994 as having the following characteristics:
- Drastic rotation of the heart's electrical axis
- Prolonged QT interval (LQTS) - may not be present in the short-coupled variant of torsade de pointes
- Preceded by long and short RR-intervals - not present in the short-coupled variant of torsade de pointes
- Triggered by a premature ventricular contraction (R-on-T PVC)
Ventricular fibrillation is a cause of cardiac arrest and sudden cardiac death. The ventricular muscle twitches randomly rather than contracting in a co-ordinated fashion (from the apex of the heart to the outflow of the ventricles), and so the ventricles fail to pump blood around the body - because of this, it is classified as a cardiac arrest rhythm, and patients in V-fib should be treated with cardiopulmonary resuscitation and prompt defibrillation. Left untreated, ventricular fibrillation is rapidly fatal as the vital organs of the body, including the heart, are starved of oxygen, and as a result patients in this rhythm will not be conscious or responsive to stimuli. Prior to cardiac arrest, patients may complain of varying symptoms depending on the underlying cause. Patients may exhibit signs of agonal breathing, which to the layperson can look like normal spontaneous breathing, but it is in fact a sign of hypoperfusion of the brainstem.
It has an appearance on electrocardiography of irregular electrical activity with no discernable pattern. It may be described as 'coarse' or 'fine' depending on its amplitude, or as progressing from coarse to fine V-fib. Coarse V-fib may be more responsive to defibrillation, while fine V-fib can mimic the appearance of asystole on a defibrillator or cardiac monitor set to a low gain. Some clinicians may attempt to defibrillate fine V-fib in the hope that it can be reverted to a cardiac rhythm compatible with life, whereas others will deliver CPR and sometimes drugs as described in the advanced cardiac life support protocols in an attempt to increase its amplitude and the odds of successful defibrillation.