Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
LAD was first recognized as a distinct clinical entity in the 1970s. The classic descriptions of LAD included recurrent bacterial infections, defects in neutrophil adhesion, and a delay in umbilical cord sloughing. The adhesion defects result in poor leukocyte chemotaxis, particularly neutrophil, inability to form pus and neutrophilia.
Individuals with LAD suffer from bacterial infections beginning in the neonatal period. Infections such as omphalitis, pneumonia, gingivitis, and peritonitis are common and often life-threatening due to the infant's inability to properly destroy the invading pathogens. These individuals do not form abscesses because granulocytes cannot migrate to the sites of infection.
The main sign of the disease is life-threatening, recurrent bacterial or fungal soft tissue infections. These infections are often apparent at birth and may spread throughout the body. Omphalitis (infection of the umbilical cord stump) is common shortly after birth. Other signs include delayed separation of the umbilical cord, periodontal disease, elevated neutrophils, and impaired wound healing, but not increased vulnerability to viral infections or cancer. Such patients have fever as the manifestation of infection, inflammatory responses are indolent.
Leukocyte adhesion deficiency (LAD), is a rare autosomal recessive disorder characterized by immunodeficiency resulting in recurrent infections. LAD is currently divided into three subtypes: LAD1, LAD2, and the recently described LAD3, also known as LAD-1/variant. In LAD3, the immune defects are supplemented by a Glanzmann thrombasthenia-like bleeding tendency.
Congenital disorder of glycosylation type IIc or Leukocyte adhesion deficiency-2 (LAD2) is a type of leukocyte adhesion deficiency attributable to the absence of neutrophil sialyl-LewisX, a ligand of P- and E-selectin on vascular endothelium. It is associated with "SLC35C1".
This disorder was discovered in two unrelated Israeli boys 3 and 5 years of age, each the offspring of consanguineous parents. Both had severe mental retardation, short stature, a distinctive facial appearance, and the Bombay (hh) blood phenotype, and both were secretor- and Lewis-negative. They both had had recurrent severe bacterial infections similar to those seen in patients with LAD1, including pneumonia, peridontitis, otitis media, and localized cellulitis. Similar to that in patients with LAD1, their infections were accompanied by pronounced leukocytosis (30,000 to 150,000/mm) but an absence of pus formation at sites of recurrent cellulitis. In vitro studies revealed a pronounced defect in neutrophil motility. Because the genes for the red blood cell H antigen and for the secretor status encode for distinct α1,2-fucosyltransferases and the synthesis of Sialyl-LewisX requires an α1,3-fucosyltransferase, it was postulated that a general defect in fucose metabolism is the basis for this disorder. It was subsequently found that GDP-L-fucose transport into Golgi vesicles was specifically impaired, and then missense mutations in the GDP-fucose transporter cDNA of three patients with LAD2 were discovered. Thus, GDP-fucose transporter deficiency is a cause of LAD2.
The precise symptoms of a primary immunodeficiency depend on the type of defect. Generally, the symptoms and signs that lead to the diagnosis of an immunodeficiency include recurrent or persistent infections or developmental delay as a result of infection. Particular organ problems (e.g. diseases involving the skin, heart, facial development and skeletal system) may be present in certain conditions. Others predispose to autoimmune disease, where the immune system attacks the body's own tissues, or tumours (sometimes specific forms of cancer, such as lymphoma). The nature of the infections, as well as the additional features, may provide clues as to the exact nature of the immune defect.
Leukocyte adhesion deficiency-1 (LAD1) is a rare and often fatal genetic disorder in humans.
The complement system is part of the innate as well as the adaptive immune system; it is a group of circulating proteins that can bind pathogens and form a membrane attack complex. Complement deficiencies are the result of a lack of any of these proteins. They may predispose to infections but also to autoimmune conditions.
1. C1q deficiency (lupus-like syndrome, rheumatoid disease, infections)
2. C1r deficiency (idem)
3. C1s deficiency
4. C4 deficiency (lupus-like syndrome)
5. C2 deficiency (lupus-like syndrome, vasculitis, polymyositis, pyogenic infections)
6. C3 deficiency (recurrent pyogenic infections)
7. C5 deficiency (Neisserial infections, SLE)
8. C6 deficiency (idem)
9. C7 deficiency (idem, vasculitis)
10. C8a deficiency
11. C8b deficiency
12. C9 deficiency (Neisserial infections)
13. C1-inhibitor deficiency (hereditary angioedema)
14. Factor I deficiency (pyogenic infections)
15. Factor H deficiency (haemolytic-uraemic syndrome, membranoproliferative glomerulonephritis)
16. Factor D deficiency (Neisserial infections)
17. Properdin deficiency (Neisserial infections)
18. MBP deficiency (pyogenic infections)
19. MASP2 deficiency
20. Complement receptor 3 (CR3) deficiency
21. Membrane cofactor protein (CD46) deficiency
22. Membrane attack complex inhibitor (CD59) deficiency
23. Paroxysmal nocturnal hemoglobinuria
24. Immunodeficiency associated with ficolin 3 deficiency
In the classical sense, acute graft-versus-host-disease is characterized by selective damage to the liver, skin (rash), mucosa, and the gastrointestinal tract. Newer research indicates that other graft-versus-host-disease target organs include the immune system (the hematopoietic system, e.g., the bone marrow and the thymus) itself, and the lungs in the form of immune-mediated pneumonitis. Biomarkers can be used to identify specific causes of GvHD, such as elafin in the skin. Chronic graft-versus-host-disease also attacks the above organs, but over its long-term course can also cause damage to the connective tissue and exocrine glands.
Acute GvHD of the GI tract can result in severe intestinal inflammation, sloughing of the mucosal membrane, severe diarrhea, abdominal pain, nausea, and vomiting. This is typically diagnosed via intestinal biopsy. Liver GvHD is measured by the bilirubin level in acute patients. Skin GvHD results in a diffuse red maculopapular rash, sometimes in a lacy pattern.
Mucosal damage to the vagina can result in severe pain and scarring, and appears in both acute and chronic GvHD. This can result in an inability to have sexual intercourse.
Acute GvHD is staged as follows: overall grade (skin-liver-gut) with each organ staged individually from a low of 1 to a high of 4. Patients with grade IV GvHD usually have a poor prognosis. If the GvHD is severe and requires intense immunosuppression involving steroids and additional agents to get under control, the patient may develop severe infections as a result of the immunosuppression and may die of infection.
In the oral cavity, chronic graft-versus-host-disease manifests as lichen planus with a higher risk of malignant transformation to oral squamous cell carcinoma in comparison to the classical oral lichen planus. Graft-versus-host-disease-associated oral cancer may have more aggressive behavior with poorer prognosis, when compared to oral cancer in non-hematopoietic stem cell transplantation patients.
Type 1 vWD (60-80% of all vWD cases) is a quantitative defect which is heterozygous for the defective gene. It can arise from failure to secrete vWF into the circulation or from vWF being cleared more quickly than normal. Decreased levels of vWF are detected at 20-50% of normal, i.e. 20-50 IU.
Many patients are asymptomatic or may have mild symptoms and not have clearly impaired clotting, which might suggest a bleeding disorder. Often, the discovery of vWD occurs incidentally to other medical procedures requiring a blood work-up. Most cases of type 1 vWD are never diagnosed due to the asymptomatic or mild presentation of type I and most people usually end up leading a normal life free of complications, with many being unaware that they have the disorder.
Trouble may, however, arise in some patients in the form of bleeding following surgery (including dental procedures), noticeable easy bruising, or menorrhagia (heavy menstrual periods). The minority of cases of type 1 may present with severe hemorrhagic symptoms.
Type 2 vWD (15-30% of cases) is a qualitative defect and the bleeding tendency can vary between individuals. Four subtypes exist: 2A, 2B, 2M, and 2N. These subtypes depend on the presence and behavior of the underlying multimers.
Graft-versus-host disease (GvHD) is a medical complication following the receipt of transplanted tissue from a genetically different person. GvHD is commonly associated with stem cell transplant (bone marrow transplant), but the term also applies to other forms of tissue graft. Immune cells (white blood cells) in the donated tissue (the graft) recognize the recipient (the host) as foreign (nonself). The transplanted immune cells then attack the host's body cells. GvHD can also occur after a blood transfusion if the blood products used have not been irradiated or treated with an approved pathogen reduction system.
Whereas transplant rejection occurs when the host rejects the graft, GvHD occurs when the graft rejects the host. The underlying principle (alloimmunity) is the same, but the details and course may differ.
Most people with ET are without symptoms referable to ET at the time of diagnosis, which is usually ultimately made after noting an elevated platelet level on a routine complete blood count (CBC). The most common symptoms are bleeding (due to dysfunctional platelets), blood clots (e.g., deep vein thrombosis or pulmonary embolism), headache, nausea, vomiting, abdominal pain, visual disturbances, dizziness, fainting, and numbness in the extremities; the most common signs are increased white blood cell count, reduced red blood cell count, and an enlarged spleen.
Essential thrombocythemia (ET) is a rare chronic blood condition characterised by the overproduction of platelets by megakaryocytes in the bone marrow. It may, albeit rarely, develop into acute myeloid leukemia or myelofibrosis. It is one of four myeloproliferative neoplasms (blood cancers that occur when the body makes too many white or red blood cells, or platelets).
ILVEN is a condition that normally only affects one side of the body (unilateral). Usually the left side of patients is affected. The condition is persistent and forms along characteristic lines. It usually appears on an extremity in infancy or childhood. Altman and Mehregan described six characteristic features of ILVEN: (1) early age of onset, (2) predominance in females (4:1 female-male ratio), (3) frequent involvement of the left leg, (4) pruritus, or "itchiness" (5) marked refractoriness to therapy, and (6) a distinctive psoriasiform and inflammatory histologic appearance.
An autoimmune disease is a condition arising from an abnormal immune response to a normal body part. There are at least 80 types of autoimmune diseases. Nearly any body part can be involved. Common symptoms include low grade fever and feeling tired. Often symptoms come and go.
A range of disorders can cause decreases in white blood cells. This type of white blood cell decreased is usually the neutrophil. In this case the decrease may be called neutropenia or granulocytopenia. Less commonly, a decrease in lymphocytes (called lymphocytopenia or lymphopenia) may be seen.
Neutrophilia (also called neutrophil leukocytosis or occasionally neutrocytosis) is leukocytosis of neutrophils, that is, a high number of neutrophil granulocytes in the blood.
The specific problems produced differ according to the particular abnormal synthesis involved. Common manifestations include ataxia; seizures; retinopathy; liver fibrosis; coagulopathies; failure to thrive; dysmorphic features ("e.g.," inverted nipples and subcutaneous fat pads; and strabismus. If an MRI is obtained, cerebellar atrophy and hypoplasia is a common finding.
Ocular abnormalities of CDG-Ia include: myopia, infantile esotropia, delayed visual maturation, low vision, optic disc pallor, and reduced rod function on electroretinography.
Three subtypes of CDG I (a,b,d) can cause congenital hyperinsulinism with hyperinsulinemic hypoglycemia in infancy.
An increase in the number of white blood cells in circulation is called leukocytosis. This increase is most commonly caused by inflammation. There are four major causes: increase of production in bone marrow, increased release from storage in bone marrow, decreased attachment to veins and arteries, decreased uptake by tissues. Leukocytosis may affect one or more cell lines and can be neutrophilic, eosinophilic, basophilic, monocytosis, or lymphocytosis.
Anomalies resembling Pelger–Huët anomaly that are acquired rather than congenital have been described as pseudo Pelger–Huët anomaly. These can develop in the course of acute myelogenous leukemia or chronic myelogenous leukemia and in myelodysplastic syndrome. It has also been described in Filovirus disease.
In patients with these conditions, the pseudo–Pelger–Huët cells tend to appear late in the disease and often appear after considerable chemotherapy has been administered. The morphologic changes have also been described in myxedema associated with panhypopituitarism, vitamin B12 and folate deficiency, multiple myeloma, enteroviral infections, malaria, muscular dystrophy, leukemoid reaction secondary to metastases to the bone marrow, and drug sensitivity, sulfa and valproate toxicities are examples. In some of these conditions, especially the drug-induced cases, identifying the change as Pelger–Huët anomaly is important because it obviates the need for further unnecessary testing for cancer.
Peripheral blood smear shows a predominance of neutrophils with bilobed nuclei which are composed of two nuclear masses connected with a thin filament of chromatin. It resembles the pince-nez glasses, so it is often referred to as pince-nez appearance. Usually the congenital form is not associated with thrombocytopenia and leukopenia, so if these features are present more detailed search for myelodysplasia is warranted, as pseudo-Pelger–Huët anomaly can be an early feature of myelodysplasia.
Inflammatory Linear Verrucous Epidermal Nevus (ILVEN) is a rare disease of the skin that presents as multiple, discrete, red papules that tend to coalesce into linear plaques that follow the Lines of Blaschko. The plaques can be slightly warty (psoriaform) or scaly (eczema-like). ILVEN is caused by somatic mutations that result in genetic mosaicism. There is no cure, but different medical treatments can alleviate the symptoms.
An immune disorder is a dysfunction of the immune system. These disorders can be characterized in several different ways:
- By the component(s) of the immune system affected
- By whether the immune system is overactive or underactive
- By whether the condition is congenital or acquired
According to the International Union of Immunological Societies, more than 150 primary immunodeficiency diseases (PIDs) have been characterized. However, the number of acquired immunodeficiencies exceeds the number of PIDs.
It has been suggested that most people have at least one primary immunodeficiency. Due to redundancies in the immune system, though, many of these are never detected.
Congenital tufting enteropathy is an inherited disorder of the small intestine that presents with intractable diarrhea in young children.
A congenital disorder of glycosylation (previously called carbohydrate-deficient glycoprotein syndrome) is one of several rare inborn errors of metabolism in which glycosylation of a variety of tissue proteins and/or lipids is deficient or defective. Congenital disorders of glycosylation are sometimes known as CDG syndromes. They often cause serious, sometimes fatal, malfunction of several different organ systems (especially the nervous system, muscles, and intestines) in affected infants. The most common subtype is CDG-Ia (also referred to as PMM2-CDG) where the genetic defect leads to the loss of phosphomannomutase 2, the enzyme responsible for the conversion of mannose-6-phosphate into mannose-1-phosphate.
In the leukocytes, the presence of very small rods (around 3 micrometers), or Döhle-like bodies can be seen in the cytoplasm.