Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In a pure lesion of the anterior interosseous nerve there may be weakness of the long flexor muscle of the thumb (Flexor pollicis longus), the deep flexor muscles of the index and middle fingers (Flexor digitorum profundus I & II), and the pronator quadratus muscle.
There is little sensory deficit since the anterior interosseous nerve has no cutaneous branch.
Most patients experience poorly localised pain in the forearm. The pain is sometimes referred into the cubital fossa and elbow pain has been reported as being a primary complaint.
The characteristic impairment of the pincer movement of the thumb and index finger is most striking.
Plantar fibromatosis is most frequently present on the medial border of the sole, near the highest point of the arch. The lump is usually painless and the only pain experienced is when the nodule rubs on the shoe or floor. The overlying skin is freely movable, and contracture of the toes does not occur in the initial stages.
The typical appearance of plantar fibromatosis on magnetic resonance imaging (MRI) is a poorly defined, infiltrative mass in the aponeurosis next to the plantar muscles.
Only 25% of patients show symptoms on both feet (bilateral involvement). The disease may also infiltrate the dermis or, very rarely, the flexor tendon sheath
Symptoms include: pain on weight bearing, frequently after only a short time. The nature of the pain varies widely among individuals. Some people experience shooting pain affecting the contiguous halves of two toes. Others describe a feeling like having a pebble in their shoe or walking on razor blades. Burning, numbness, and paresthesia may also be experienced. The symptoms progress over time, often beginning as a tingling sensation in the ball of the foot.
Morton's neuroma lesions have been found using MRI in patients without symptoms.
Plantar fascial fibromatosis, also known as Ledderhose's disease, Morbus Ledderhose, and plantar fibromatosis, is a relatively uncommon non-malignant thickening of the feet's deep connective tissue, or fascia. In the beginning, where nodules start growing in the fascia of the foot the disease is minor . Over time walking becomes painful. The disease is named after Dr. Georg Ledderhose, a German surgeon who described the condition for the first time in 1894. A similar disease is Dupuytren's disease, which affects the hand and causes bent hand or fingers.
As in most forms of fibromatosis, it is usually benign and its onset varies with each patient. The nodules are typically slow growing and most often found in the central and medial portions of the plantar fascia. Occasionally, the nodules may lie dormant for months to years only to begin rapid and unexpected growth. Options for intervention include radiation therapy, cryosurgery, treatment with collagenase clostridium histolyticum, or surgical removal only if discomfort hinders walking.
This is the least severe form of nerve injury, with complete recovery. In this case, the axon remains intact, but there is myelin damage causing an interruption in conduction of the impulse down the nerve fiber. Most commonly, this involves compression of the nerve or disruption to the blood supply (ischemia). There is a temporary loss of function which is reversible within hours to months of the injury (the average is 6–9 weeks). Wallerian degeneration does not occur, so recovery does not involve actual regeneration. There is frequently greater involvement of motor than sensory function with autonomic function being retained. In electrodiagnostic testing with nerve conduction studies, there is a normal compound motor action potential amplitude distal to the lesion at day 10, and this indicates a diagnosis of mild neuropraxia instead of axonotmesis or neurotmesis.
Morton's neuroma (also known as Morton neuroma, Morton's metatarsalgia, Intermetatarsal neuroma and Intermetatarsal space neuroma.) is a benign neuroma of an intermetatarsal plantar nerve, most commonly of the second and third intermetatarsal spaces (between 2nd−3rd and 3rd−4th metatarsal heads), which results in the entrapment of the affected nerve. The main symptoms are pain and/or numbness, sometimes relieved by removing narrow or high-heeled footwear. Sometimes symptoms are relieved by wearing non-constricting footwear.
Some sources claim that entrapment of the plantar nerve because of compression between the metatarsal heads, as originally proposed by Morton, is highly unlikely, because the plantar nerve is on the plantar side of the transverse metatarsal ligament and thus does not come in contact with the metatarsal heads. It is more likely that the transverse metatarsal ligament is the cause of the entrapment.
Despite the name, the condition was first correctly described by a chiropodist named Durlacher, and although it is labeled a "neuroma", many sources do not consider it a true tumor, but rather a perineural fibroma (fibrous tissue formation around nerve tissue).
Peripheral nerve injuries can be classified in two different ways. Neurotmesis is classified under the Seddon system which is defined by three grades of nerve injury. The mildest grade is referred to as neurapraxia and is characterized by a reduction or complete blockage of conduction across a segment of nerve while axonal continuity is maintained and nerve conduction is preserved. These injuries are almost always reversed and a recovery takes place within days or weeks. The second classification of the Seddon system is referred to as axonotmesis which is a more severe case of peripheral nerve injury. Axonotmesis is classified by an interruption of the axons, but a preservation of the surrounding connective tissues around the axon. These injuries can heal themselves at about 1mm/day, therefore resulting in recovery to be possible but at a slower rate than neurapraxia. The last and most severe case of peripheral nerve injury is known as neurotmesis, which in most cases cannot be completely recovered from even with surgical repair.
The second classification of nerve injury is known as the Sunderland classification which is more complex and specific. This classification uses five different degrees of nerve injury, the first one being the least severe and the equivalent to neurapraxia and the most severe being the fifth degree and having the same classification as neurotmesis. The second through fourth degrees are dependent on the variance of axon discontinuity and are classified under Seddon’s classification of axonotmesis.
Changes in muscle performance can be broadly described as the upper motor neuron syndrome. These changes vary depending on the site and the extent of the lesion, and may include:
- Muscle weakness. A pattern of weakness in the extensors (upper limbs) or flexors (lower limbs), is known as 'pyramidal weakness'
- Decreased control of active movement, particularly slowness
- Spasticity, a velocity-dependent change in muscle tone
- Clasp-knife response where initial higher resistance to movement is followed by a lesser resistance
- Babinski sign is present, where the big toe is raised (extended) rather than curled downwards (flexed) upon appropriate stimulation of the sole of the foot. The presence of the Babinski sign is an abnormal response in adulthood. Normally, during the plantar reflex, it causes plantar flexion and the adduction of the toes. In Babinski's sign, there is dorsiflexion of the big toe and abduction of the other toes. Physiologically, it is normally present in infants from birth to 12 months. The presence of the Babinski sign after 12 months is the sign of a non-specific upper motor neuron lesion.
- Increased deep tendon reflex (DTR)
- Pronator drift
Neurotmesis (in Greek tmesis signifies "to cut") is part of Seddon's classification scheme used to classify nerve damage. It is the most serious nerve injury in the scheme. In this type of injury, both the nerve and the nerve sheath are disrupted. While partial recovery may occur, complete recovery is impossible.
A variety of nerve types can be subjected to neurapraxia and therefore symptoms of the injury range in degree and intensity. Common symptoms of neurapraxia are disturbances in sensation, weakness of muscle, vasomotor and sudomotor paralysis in the region of the affected nerve or nerves, and abnormal sensitivity of the nerve at the point of injury. It has been observed that subjective sensory symptoms include numbness, tingling, and burning sensations at the site of the injury. Objective sensory symptoms are generally minimal in regards to touch, pain, heat, and cold. In cases of motor neuron neurapraxia, symptoms consist of flaccid paralysis of the muscles innervated by the injured nerve or nerves.
Symptoms are often transient and only last for a short period of time immediately following the injury. However, in severe cases of neurapraxia, symptoms can persist for weeks or months at a time.
This gait pattern is reminiscent of a marionette. Hypertonia in the legs, hips and pelvis means these areas become flexed to various degrees, giving the appearance of crouching, while tight adductors produce extreme adduction, presented by knees and thighs hitting, or sometimes even crossing, in a scissors-like movement while the opposing muscles, the abductors, become comparatively weak from lack of use. Most common in patients with spastic cerebral palsy, the individual is often also forced to walk on tiptoe unless the plantarflexor muscles are released by an orthaepedic surgical procedure.
These features are most typical with the scissors gait and usually result in some form and to some degree regardless of the mildness or severity of the spastic CP condition:
- rigidity and excessive adduction of the leg in swing
- plantar flexion of the ankle
- flexion at the knee
- adduction and internal rotation at the hip
- progressive contractures of all spastic muscles
- complicated assisting movements of the upper limbs when walking.
Tingling, numbness, and/ or a burning sensation in the area of the body affected by the corresponding nerve. These experiences may occur directly following insult or may occur several hours or even days afterwards. Note that pain is not a common symptom of nerve entrapment.
Some of the symptoms are:
- Pain and tingling in and around ankles and sometimes the toes
- Swelling of the feet
- Painful burning, tingling, or numb sensations in the lower legs. Pain worsens and spreads after standing for long periods; pain is worse with activity and is relieved by rest.
- Electric shock sensations
- Pain radiating up into the leg, and down into the arch, heel, and toes
- Hot and cold sensations in the feet
- A feeling as though the feet do not have enough padding
- Pain while operating automobiles
- Pain along the Posterior Tibial nerve path
- Burning sensation on the bottom of foot that radiates upward reaching the knee
- "Pins and needles"-type feeling and increased sensation on the feet
- A positive Tinel's sign
Tinel's sign is a tingling electric shock sensation that occurs when you tap over an affected nerve. The sensation usually travels into the foot but can also travel up the inner leg as well.
An upper motor neuron lesion (also known as pyramidal insufficiency) occurs in the neural pathway above the anterior horn cell of the spinal cord or motor nuclei of the cranial nerves. Conversely, a lower motor neuron lesion affects nerve fibers traveling from the anterior horn of the spinal cord or the cranial motor nuclei to the relevant muscle(s).
Upper motor neuron lesions occur in the brain or the spinal cord as the result of stroke, multiple sclerosis, traumatic brain injury and cerebral palsy.
Injuries to the arm, forearm or wrist area can lead to various nerve disorders. One such disorder is median nerve palsy. The median nerve controls the majority of the muscles in the forearm. It controls abduction of the thumb, flexion of hand at wrist, flexion of digital phalanx of the fingers, is the sensory nerve for the first three fingers, etc. Because of this major role of the median nerve, it is also called the eye of the hand. If the median nerve is damaged, the ability to abduct and oppose the thumb may be lost due to paralysis of the thenar muscles. Various other symptoms can occur which may be repaired through surgery and tendon transfers. Tendon transfers have been very successful in restoring motor function and improving functional outcomes in patients with median nerve palsy.
In medicine, split hand syndrome is a neurological syndrome in which the hand muscles on the side of the thumb (lateral, thenar eminence) appear wasted, whereas the muscles on the side of the little finger (medial, hypothenar eminence) are spared. Anatomically, the abductor pollicis brevis and first dorsal interosseous muscle are more wasted than the abductor digiti minimi.
If lesions affecting the branches of the ulnar nerve that run to the wasted muscles are excluded, the lesion is almost sure to be located in the anterior horn of the spinal cord at the C8-T1 level. It has been proposed as a relatively specific sign for amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). It can also occur in other disorders affecting the anterior horn, such as spinal muscular atrophy, Charcot-Marie-Tooth disease, poliomyelitis and progressive muscular atrophy. A slow onset and a lack of pain or sensorial symptoms are arguments against a lesion of the spinal root or plexus brachialis. To an extent, these features can also be seen in normal aging (although technically, the apparent muscle wasting is sarcopenia rather than atrophy).
The term split hand syndrome was first coined in 1994 by a researcher from the Cleveland Clinic called Asa J. Wilbourn.
Nerve injury is injury to nervous tissue. There is no single classification system that can describe all the many variations of nerve injury. In 1941, Seddon introduced a classification of nerve injuries based on three main types of nerve fiber injury and whether there is continuity of the nerve. Usually, however, (peripheral) nerve injury is classified in five stages, based on the extent of damage to both the nerve and the surrounding connective tissue, since supporting glial cells may be involved. Unlike in the central nervous system, neuroregeneration in the peripheral nervous system is possible. The processes that occur in peripheral regeneration can be divided into the following major events: Wallerian degeneration, axon regeneration/growth, and nerve reinnervation. The events that occur in peripheral regeneration occur with respect to the axis of the nerve injury. The proximal stump refers to the end of the injured neuron that is still attached to the neuron cell body; it is the part that regenerates. The distal stump refers to the end of the injured neuron that is still attached to the end of the axon; it is the part of the neuron that will degenerate but that remains in the area toward which the regenerating axon grows. The study of peripheral nerve injury began during the American Civil War and has greatly expanded to the point of using growth-promoting molecules.
The most common finding is oculomotor nerve dysfunction leading to ophthalmoplegia. This is often accompanied by ophthalmic nerve dysfunction, leading to hypoesthesia of the upper face. The optic nerve may eventually be involved, with resulting visual impairment.
Trigeminal trophic syndrome (Trigeminal trophic lesion) is a rare disease caused by the interruption of peripheral or central sensory pathways of the trigeminal nerve. A slowly enlarging, uninflammed ulcer can occur in the area that has suffered the trigeminal nerve damage; including but not limited to the cheek beside the ala nasi. These sores affect the skin supplied by the sensory component of the trigeminal nerve. Similar lesions may also occur in the corners of the eyes, inside the ear canal, on the scalp or inside the mouth.
It has been stated that the ulceration is due to the constant "picking" of the patient. While this does occur it should not be limited to this alone. The lack of feeling or pain allows the patient to continue itching or picking the area. Even though there is no feeling, there is constant neuropathic pain.
Sixty cases were reported from 1982 to 2002.
Diagnostic methods vary, and are based on specific possible etiologies; however, an X-ray computed tomography scan of the face (or magnetic resonance imaging, or both) may be helpful.
The sciatic nerve (; also called "ischiadic nerve", "ischiatic nerve", "butt nerve") is a large nerve in humans and other animals. It begins in the lower back and runs through the buttock and down the lower limb. It is the longest and widest single nerve in the human body, going from the top of the leg to the foot on the posterior aspect. The sciatic nerve provides the connection to the nervous system for nearly the whole of the skin of the leg, the muscles of the back of the thigh, and those of the leg and foot. It is derived from spinal nerves L4 to S3. It contains fibers from both the anterior and posterior divisions of the lumbosacral plexus.
Foot drop is characterized by steppage gait. While walking, people suffering the condition drag their toes along the ground or bend their knees to lift their foot higher than usual to avoid the dragging. This serves to raise the foot high enough to prevent the toe from dragging and prevents the slapping. To accommodate the toe drop, the patient may use a characteristic tiptoe walk on the opposite leg, raising the thigh excessively, as if walking upstairs, while letting the toe drop. Other gaits such as a wide outward leg swing (to avoid lifting the thigh excessively or to turn corners in the opposite direction of the affected limb) may also indicate foot drop.
Patients with painful disorders of sensation (dysesthesia) of the soles of the feet may have a similar gait but do not have foot drop. Because of the extreme pain evoked by even the slightest pressure on the feet, the patient walks as if walking barefoot on hot sand.
Cranial nerve disease is an impaired functioning of one of the twelve cranial nerves. Although it could theoretically be considered a mononeuropathy, it is not considered as such under MeSH.
It is possible for a disorder of more than one cranial nerve to occur at the same time, if a trauma occurs at a location where many cranial nerves run together, such as the jugular fossa. A brainstem lesion could also cause impaired functioning of multiple cranial nerves, but this condition would likely also be accompanied by distal motor impairment.
A neurological examination can test the functioning of individual cranial nerves, and detect specific impairments.
Neurapraxia is a disorder of the peripheral nervous system in which there is a temporary loss of motor and sensory function due to blockage of nerve conduction, usually lasting an average of six to eight weeks before full recovery. Neurapraxia is derived from the word apraxia, meaning “loss or impairment of the ability to execute complex coordinated movements without muscular or sensory impairment”.
This condition is typically caused by a blunt neural injury due to external blows or shock-like injuries to muscle fibers and skeletal nerve fibers, which leads to repeated or prolonged pressure buildup on the nerve. As a result of this pressure, ischemia occurs, a neural lesion results, and the human body naturally responds with edema extending in all directions from the source of the pressure. This lesion causes a complete or partial action potential conduction block over a segment of a nerve fiber and thus a reduction or loss of function in parts of the neural connection downstream from the lesion, leading to muscle weakness.
Neurapraxia results in temporary damage to the myelin sheath but leaves the nerve intact and is an impermanent condition; thus, Wallerian degeneration does not occur in neurapraxia. In order for the condition to be considered neurapraxia, according to the Seddon classification system of peripheral nerve injury, there must be a complete and relatively rapid recovery of motor and sensory function once nerve conduction has been restored; otherwise, the injury would be classified as axonotmesis or neurotmesis. Thus, neurapraxia is the mildest classification of peripheral nerve injury.
Neurapraxia is very common in professional athletes, especially American football players, and is a condition that can and should be treated by a physician.