Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A lymphocyte is one of the subtypes of white blood cell in a vertebrate's immune system. Lymphocytes include natural killer cells (Phagocytes) (which function in cell-mediated, cytotoxic innate immunity), T cells (for cell-mediated, cytotoxic adaptive immunity), and B cells (for humoral, antibody-driven adaptive immunity). They are the main type of cell found in lymph, which prompted the name "lymphocyte".
Plasma cells, also called plasma B cells, plasmocytes, plasmacytes, or effector B cells, are white blood cells that secrete large volumes of antibodies. They are transported by the blood plasma and the lymphatic system. Plasma cells originate in the bone marrow; B cells differentiate into plasma cells that produce antibody molecules closely modelled after the receptors of the precursor B cell. Once released into the blood and lymph, these antibody molecules bind to the target antigen (foreign substance) and initiate its neutralization or destruction.
The three major types of lymphocyte are T cells, B cells and natural killer (NK) cells. Lymphocytes can be identified by their large nucleus.
Eosinophils compose about 2-4% of the WBC total. This count fluctuates throughout the day, seasonally, and during menstruation. It rises in response to allergies, parasitic infections, collagen diseases, and disease of the spleen and central nervous system. They are rare in the blood, but numerous in the mucous membranes of the respiratory, digestive, and lower urinary tracts.
They primarily deal with parasitic infections. Eosinophils are also the predominant inflammatory cells in allergic reactions. The most important causes of eosinophilia include allergies such as asthma, hay fever, and hives; and also parasitic infections. They secrete chemicals that destroy these large parasites, such as hook worms and tapeworms, that are too big for any one WBC to phagocytize. In general, their nucleus is bi-lobed. The lobes are connected by a thin strand. The cytoplasm is full of granules that assume a characteristic pink-orange color with eosin staining.
Neutrophils are the most abundant white blood cell, constituting 60-70% of the circulating leukocytes. They defend against bacterial or fungal infection. They are usually first responders to microbial infection; their activity and death in large numbers form pus. They are commonly referred to as polymorphonuclear (PMN) leukocytes, although, in the technical sense, PMN refers to all granulocytes. They have a multi-lobed nucleus, which consists of three to five lobes connected by slender strands. This gives the neutrophils the appearance of having multiple nuclei, hence the name polymorphonuclear leukocyte. The cytoplasm may look transparent because of fine granules that are pale lilac when stained. Neutrophils are active in phagocytosing bacteria and are present in large amount in the pus of wounds. These cells are not able to renew their lysosomes (used in digesting microbes) and die after having phagocytosed a few pathogens. Neutrophils are the most common cell type seen in the early stages of acute inflammation. The life span of a circulating human neutrophil is about 5.4 days.
The typical patient with lymphocyte-variant hypereosinophilia presents with an extended history of hypereosinophilia and cutaneous allergy-like symptoms. Skin symptoms, which occur in >75% of patients, include erythroderma, pruritis, eczema, Poikiloderma, urticarial, and episodic angioedema. The symptom of episodic angioedema in lymphocyte-variant hypereosinophilia resembles that occurring in Gleich's syndrome, a rare disease that is accompanied by secondary hypereosinophilia plus a sub-population of CD3(-), CD4(+) T cells and therefore proposed, at least in many patients, a subtype of lymphocyte-variant hypereosiophilia. Biopsies of these erythroderma and eczema skin lesions find prominent accumulations of eosinophils. Other presentations include; a) lymphadenopathy occurring in ~60% of patients; b) eosinophil infiltrations in lung similar to, and often diagnosed as, eosinophilic pneumonia, occurring in ~20% of patients; c) episodic angioedema-related gastrointestinal symptoms that are sometimes similar to symptoms of the irritable bowel syndrome occurring in ~20% of patients; d) rheumatologic manifestations of inflammatory arthralgias in ~20% of patients; and e) splenomegaly occurring in ~10% of patients. Cardiovascular complications such as various types of heart damage (see above History section) and vascular injuries due to eosinophil infiltration and eosinophil-induced thrombosis are often critical components of persistent hypereosinohilia syndromes; These complications are not a prominent component of lymphocyte-variant hypereosionophilia, occurring in <10% of patients.
Lymphocyte-variant hypereosinophila, also termed lymphocyte variant eosinophilia, is a rare disorder in which eosinophilia or hypereosinophilia (i.e. a large or extremely large increase in the number of eosinophils in the blood circulation) is caused by aberrant population of lymphocytes. These aberrant lymphocytes function abnormally by stimulating the proliferation and maturation of bone marrow eosinophil-precursor cells termed colony forming unit-Eosinophils or CFU-Eos.
The overly stimulated CFU-Eos cells mature to apparently normal eosinophils, enter the circulation, and may accumulate in, and severely damage, various tissues. The disorder is usually indolent or slowly progressive but may proceed to a leukemic phase and at this phases is sometimes classified as acute eosinophilic leukemia. Hence, lymphocyte-variant hypereosinophilia can be regarded as a precancerous disease.
The order merits therapeutic intervention to avoid or reduce eosinophil-induced tissue injury and to treat its leukemic phase. The latter phase of the disease is aggressive and typically responds relatively poorly to anti-leukemia chemotherapeutic drug regimens.
Natural killer cells or NK cells are a type of cytotoxic lymphocyte critical to the innate immune system. The role NK cells play is analogous to that of cytotoxic T cells in the vertebrate adaptive immune response. NK cells provide rapid responses to viral-infected cells, acting at around 3 days after infection, and respond to tumor formation. Typically, immune cells detect major histocompatibility complex (MHC) presented on infected cell surfaces, triggering cytokine release, causing lysis or apoptosis. NK cells are unique, however, as they have the ability to recognize stressed cells in the absence of antibodies and MHC, allowing for a much faster immune reaction. They were named "natural killers" because of the initial notion that they do not require activation to kill cells that are missing "self" markers of MHC class 1. This role is especially important because harmful cells that are missing MHC I markers cannot be detected and destroyed by other immune cells, such as T lymphocyte cells.
NK cells (belonging to the group of innate lymphoid cells) are defined as large granular lymphocytes (LGL) and constitute the third kind of cells differentiated from the common lymphoid progenitor-generating B and T lymphocytes. NK cells are known to differentiate and mature in the bone marrow, lymph nodes, spleen, tonsils, and thymus, where they then enter into the circulation. NK cells differ from natural killer T cells (NKTs) phenotypically, by origin and by respective effector functions; often, NKT cell activity promotes NK cell activity by secreting interferon gamma. In contrast to NKT cells, NK cells do not express T-cell antigen receptors (TCR) or pan T marker CD3 or surface immunoglobulins (Ig) B cell receptors, but they usually express the surface markers CD16 (FcγRIII) and CD56 in humans, NK1.1 or NK1.2 in C57BL/6 mice. The NKp46 cell surface marker constitutes, at the moment, another NK cell marker of preference being expressed in both humans, several strains of mice (including BALB/c mice) and in three common monkey species.
In addition to the knowledge that natural killer cells are effectors of innate immunity, recent research has uncovered information on both activating and inhibitory NK cell receptors which play important functional roles, including self tolerance and the sustaining of NK cell activity. NK cells also play a role in the adaptive immune response: numerous experiments have demonstrated their ability to readily adjust to the immediate environment and formulate antigen-specific immunological memory, fundamental for responding to secondary infections with the same antigen. The role of NK cells in both the innate and adaptive immune responses is becoming increasingly important in research using NK cell activity as a potential cancer therapy.
Persons afflicted with X-SCID often have infections very early in life, before three months of age. This occurs due to the decreased amount of immunoglobulin G (IgG) levels in the infant during the three-month stage. This is followed by viral infections such as pneumonitis, an inflammation of the lung which produces common symptoms such as cough, fever, chills, and shortness of breath. A telltale sign of X-SCID is candidiasis, a type of fungal infection caused by "Candida albicans". Candidiasis involves moist areas of the body such as skin, the mouth, respiratory tract, and vagina; symptoms of oral candidiasis include difficulty in swallowing, pain on swallowing and oral lesions. Recurrent eczema-like rashes are also a common symptom. Other common infections experienced by individuals with X-SCID include diarrhea, sepsis, and otitis media. Some other common symptoms that are experienced by X-SCID patients include failure to thrive, gut problems, skin problems, and muscle hypotonia.
In some patients symptoms may not appear for the first six months after birth. This is likely due to passive immunity received from the mother in order to protect the baby from infections until the newborn is able to make its own antibodies. As a result, there can be a silent period where the baby displays no symptoms of X-SCID followed by the development of frequent infections.
In some cases, lymphocytopenia can be further classified according to which kind of lymphocytes are reduced. If all three kinds of lymphocytes are suppressed, then the term is used without further qualification.
- In T lymphocytopenia, there are too few T lymphocytes, but normal numbers of other lymphocytes. It causes, and manifests as, a T cell deficiency. This is usually caused by HIV infection (resulting in AIDS), but may be Idiopathic CD4+ lymphocytopenia (ICL), which is a very rare heterogeneous disorder defined by CD4+ T-cell counts below 300 cells/μL in the absence of any known immune deficiency condition, such as human immunodeficiency virus (HIV) infection or chemotherapy.
- In B lymphocytopenia, there are too few B lymphocytes, but possibly normal numbers of other lymphocytes. It causes, and manifests as, a humoral immune deficiency. This is usually caused by medications that suppress the immune system.
- In NK lymphocytopenia, there are too few natural killer cells, but normal numbers of other lymphocytes. This is very rare.
Peripheral blood lymphocytes (PBL) are mature lymphocytes that circulate in the blood, rather than localising to organs (such as the spleen or lymph nodes). They comprise T cells, NK cells and B cells.
Lymphocytopenia is diagnosed when the complete blood count shows a lymphocyte count lower than the age-appropriate reference interval (for example, below 1.0 x 10(9)/L in an adult).
X-linked severe combined immunodeficiency (X-SCID) is an immunodeficiency disorder in which the body produces very few T cells and NK cells. In the absence of T cell help, B cells become defective. It is an x-linked recessive trait, stemming from a mutated (abnormal) version of the IL2-RG gene located at xq13.1 on the X-chromosome, which is shared between receptors for IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21.
After leaving the bone marrow, the B cell acts as an antigen presenting cell (APC) and internalizes offending antigens, which are taken up by the B cell through receptor-mediated endocytosis and processed. Pieces of the antigen (which are now known as "antigenic peptides") are loaded onto MHC II molecules, and presented on its extracellular surface to CD4+ T cells (sometimes called "T helper cells"). These T cells bind to the MHC II-antigen molecule and cause activation of the B cell. This is a type of safeguard to the system, almost like a two-factor authentication method. First, the B cells have to encounter a foreign antigen, and are then required to be activated by T helper cells before they differentiate to specific cells.
Upon stimulation by a T cell, which usually occurs in germinal centers of secondary lymphoid organs like the spleen and lymph nodes, the activated B cell begins to differentiate into more specialized cells. Germinal center B cells may differentiate into memory B cells or plasma cells. Most of these B cells will become plasmablasts (or "immature plasma cells"), and eventually plasma cells, and begin producing large volumes of antibodies. Some B cells will undergo a process known as affinity maturation. This process favors, by selection for the ability to bind antigen with higher affinity, the activation and growth of B cell clones able to secrete antibodies of higher affinity for the antigen.
The cell of origin is postulated to be a post-germinal center B-cell with an unknown degree of differentiation. SMZL is a form of cancer known to be associated with Hepatitis C virus infection.
The Xanthogranulomatous Process (XP), also known as Xanthogranulomatous Inflammation is a form of acute and chronic inflammation characterized by an exuberant clustering of foamy macrophages among other inflammatory cells. Localization in the kidney and renal pelvis has been the most frequent and better known occurrence followed by that in the gallbladder but many others have been subsequently recorded. The pathological findings of the process and etiopathogenetic and clinical observations have been reviewed by Cozzutto and Carbone.
Under older classification systems, the following names were used:
Lymphocytosis is an increase in the number of lymphocytes in the blood. In adults, lymphocytosis is present when the lymphocyte count is greater than 4000 per microliter (4.0 x 10(9)/L), in older children greater than 7000 per microliter and in infants greater than 9000 per microliter. Lymphocytes normally represent 20 to 40% of circulating white blood cells.
Lymphocytosis is usually detected when a complete blood count is obtained. If not provided the lymphocyte count can be calculated by multiplying the total white blood cell (WBC) count by the percentage of lymphocytes found in the differential count. The lymphocyte count can also be directly measured by flow cytometry.
Lymphocytosis is a feature of infection, particularly in children. In the elderly, lymphoproliferative disorders, including chronic lymphocytic leukaemia and lymphomas, often present with lymphadenopathy and a lymphocytosis.
Causes of absolute lymphocytosis include:
- acute viral infections, such as infectious mononucleosis (glandular fever), hepatitis and Cytomegalovirus infection
- other acute infections such as pertussis
- some protozoal infections, such as toxoplasmosis and American trypanosomiasis (Chagas disease)
- chronic intracellular bacterial infections such as tuberculosis or brucellosis
- chronic lymphocytic leukemia
- acute lymphoblastic leukemia
- lymphoma
- post-splenectomy state
- smoking
Causes of relative lymphocytosis include: age less than 2 years; acute viral infections; connective tissue diseases, thyrotoxicosis, Addison's disease, and splenomegaly with splenic sequestration of granulocytes.
Splenic lymphoma with villous lymphocytes is a rare type of lymphoma that involves mature B cells. Older names include "lymphoma simulating hairy cell leukemia" and "lymphoplasmacytic lymphoma with circulating villous lymphocytes". Whether this condition is identical to splenic marginal zone lymphoma, or only highly similar, is a matter of debate.
This disease is known for an indolent clinical course and incidental discovery. The most common physical finding is moderate splenomegaly. B symptoms are seen in a third of cases, and recurrent infections due to the associated neutropenia are seen in almost half of cases.
Rheumatoid arthritis is commonly observed in people with T-LGLL, leading to a clinical presentation similar to Felty's syndrome. Signs and symptoms of anemia are commonly found, due to the association between T-LGLL and erythroid hypoplasia.
Epithelioid cells are an essential characteristic of granulomas: that is to say that without them a histological finding is not a granuloma. A granuloma can be defined as "an organized collection of epithelioid macrophages." A non-purist would give a broader definition of the granuloma as "an organized collection of macrophages." The latter definition would include mere collections of giant cells surrounding inert substances like suture material – the so-called "non-immune granulomas."
Granuloma formation is a strategy that has evolved to deal with those pathogens that have learned to evade the host immune system by various means like resisting phagocytosis and killing within the macrophages. Granulomas try to wall off these organisms and prevent their further growth and spread. Many old scourges of mankind like tuberculosis, leprosy and syphilis fall into this category of diseases. Granuloma formation is also the feature of many of our newer problems like fungal infections, sarcoidosis and Crohn's diseases.
The leukemic cells of T-LGLL can be found in peripheral blood, bone marrow, spleen, and liver. Nodal involvement is rare.
The disease spectrum results from clonal accumulation and proliferation of cells resembling the epidermal dendritic cells called Langerhans cells, sometimes called Dendritic Cell Histiocytosis. These cells in combination with lymphocytes, eosinophils, and normal histiocytes form typical LCH lesions that can be found in almost any organ. A similar set of diseases has been described in canine histiocytic diseases.
LCH is clinically divided into three groups: unifocal, multifocal unisystem, and multifocal multisystem.
One classification system for lymphomas divides the diseases according to the size of the white blood cells that has turned cancerous. The large-cell lymphomas have large cells. A large cell, in this context, has a diameter of 17 to 20 µm. Other groups of lymphomas in this system are the small-cell lymphomas and mixed-cell lymphomas.