Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
LCMV infection manifests itself in a wide range of clinical symptoms, and may even be asymptomatic for immunocompetent individuals. Onset typically occurs between one or two weeks after exposure to the virus and is followed by a biphasic febrile illness. During the initial or prodromal phase, which may last up to a week, common symptoms include fever, lack of appetite, headache, muscle aches, malaise, nausea, and/or vomiting. Less frequent symptoms include a sore throat and cough, as well as joint, chest, and parotid pain. The onset of the second phase occurs several days after recovery, and consists of symptoms of meningitis or encephalitis. Pathological findings during the first stage consist of leukopenia and thrombocytopenia. During the second phase, typical findings include elevated protein levels, increased leukocyte count, or a decrease in glucose levels of the cerebrospinal fluid).
Occasionally, a patient improves for a few days, then relapses with aseptic meningitis, or very rarely, meningoencephalitis.
Patients with meningitis may have a stiff neck, fever, headache, myalgia, nausea and malaise. In some occasions, meningitis occurs without a prodromal syndrome. Meningoencephalitis is characterized by more profound neurological signs such as confusion, drowsiness, sensory abnormalities and motor signs. Under reported complications include myelitis, Guillain–Barré-type syndrome, cranial nerve palsies, transient or permanent hydrocephalus, sensorineural hearing loss, orchitis, arthritis and parotitis. LCMV infections have also been associated with pancreatitis, pneumonitis, myocarditis and pericarditis. The entire illness usually lasts 1 to 3 weeks, nonetheless, temporary or permanent neurological damage is possible in all central nervous system infections, especially in cases of meningoencephalitis. Chronic infections have not been reported in humans and deaths rarely occur.
Lymphocytic choriomeningitis is a particular concern in obstetrics, as vertical transmission is known to occur. For immunocompetent mothers, there is no significant threat, but the virus has damaging effects upon the fetus. If infection occurs during the first trimester, LCMV results in an increased risk of spontaneous abortion. Later congenital infection may lead to malformations such as intracranial calcifications, hydrocephalus, microcephaly or macrocephaly, intellectual disabilities, and seizures. Other findings include chorioretinal scars, and optic atrophy. Chorioretinitis, which is followed by chorioretinal scarring, is the most common ocular lesion. Mortality among infants is approximately 30%. Among the survivors, two thirds have lasting neurologic abnormalities.
Other ocular defects including optic atrophy, microphthalmia, vitreitis, leukokoria and cataracts can also be seen. Most of the infants in one case series were of normal birth weight, although 30% were underweight. Aspiration pneumonia can be a fatal complication. Infants who survive may have severe neurological defects including epilepsy, impaired coordination, visual loss or blindness, spastic diplegia or quadriparesis/quadriplegia, delayed development and intellectual disability. Less severe cases with isolated cerebellar hypoplasia and symptoms of ataxia and jitteriness have been reported occasionally. There have also been rare cases with evidence of chorioretinitis but without neurological signs. Systemic signs seem to be rare, but hepatosplenomegaly, thrombocytopenia and hyperbilirubinemia have been documented in a few cases, and skin blisters were reported in one infant.
If a woman has come into contact with a rodent during pregnancy and LCM symptoms are manifested, a blood test is available to determine previous or current infection. A history of infection does not pose a risk for future pregnancies.
An emerging infectious disease (EID) is an infectious disease whose incidence has increased in the past 20 years and could increase in the near future. Emerging infections account for at least 12% of all human pathogens. EIDs are caused by newly identified species or strains (e.g. Severe acute respiratory syndrome, HIV/AIDS) that may have evolved from a known infection (e.g. influenza) or spread to a new population (e.g. West Nile fever) or to an area undergoing ecologic transformation (e.g. Lyme disease), or be "reemerging" infections, like drug resistant tuberculosis. Nosocomial (hospital-acquired) infections, such as methicillin-resistant Staphylococcus aureus are emerging in hospitals, and extremely problematic in that they are resistant to many antibiotics. Of growing concern are adverse synergistic interactions between emerging diseases and other infectious and non-infectious conditions leading to the development of novel syndemics. Many emerging diseases are zoonotic - an animal reservoir incubates the organism, with only occasional transmission into human populations.
Viral meningitis characteristically presents with fever, headache and neck stiffness. Fever is the result of cytokines released that affect the thermoregulatory neurons of the hypothalamus. Cytokines and increased intracranial pressure stimulate nociceptors in the brain that lead to headaches. Neck stiffness is the result of inflamed meninges stretching due to flexion of the spine. In contrast to bacterial meningitis, symptoms are often less severe and do not progress as quickly. Nausea, vomiting and photophobia (light sensitivity) also commonly occur, as do general signs of a viral infection, such as muscle aches and malaise. Increased cranial pressure from viral meningitis stimulates the area postrema, which causes nausea and vomiting. Photophobia is due to meningeal irritation. In severe cases, people may experience concomitant encephalitis (meningoencephalitis), which is suggested by symptoms such as altered mental status, seizures or focal neurologic deficits.
Babies with viral meningitis may only appear irritable, sleepy or have trouble eating. In severe cases, people may experience concomitant encephalitis (meningoencephalitis), which is suggested by symptoms such as altered mental status, seizures or focal neurologic deficits. The pediatric population may show some additional signs and symptoms that include jaundice and bulging fontanelles.
Viral meningitis, also known as aseptic meningitis, is a type of meningitis due to a viral infection. It results in inflammation of the meninges (the membranes covering the brain and spinal cord). Symptoms commonly include headache, fever, sensitivity to light, and neck stiffness.
Viruses are the most common cause of aseptic meningitis. Most cases of viral meningitis are caused by enteroviruses (common stomach viruses). However, other viruses can also cause viral meningitis. For instance, West Nile virus, mumps, measles, herpes simplex types I and II, varicella, and lymphocytic choriomeningitis (LCM) virus. Based on clinical symptoms, viral meningitis cannot be reliably differentiated from bacterial meningitis, although viral meningitis typically follows a more benign clinical course. Viral meningitis has no evidence of bacteria present in cerebral spinal fluid (CSF). Therefore, lumbar puncture with CSF analysis is often needed to identify the disease.
In most causes there is no specific treatment, with efforts generally aimed at relieving symptoms (headache, fever, or nausea). A few viral causes, such as HSV, have specific treatments.
In the United States viral meningitis is the cause of greater than half of all cases of meningitis. From 1988–1999, about 36,000 cases occurred a year. While the disease can occur in both children and adults it is more common in children.
The U.S. Centers for Disease Control and Prevention (CDC) publishes a journal "Emerging Infectious Diseases" that identifies the following factors contributing to disease emergence:
- Microbial adaption; e.g. genetic drift and genetic shift in Influenza A
- Changing human susceptibility; e.g. mass immunocompromisation with HIV/AIDS
- Climate and weather; e.g. diseases with zoonotic vectors such as West Nile Disease (transmitted by mosquitoes) are moving further from the tropics as the climate warms
- Change in human demographics and trade; e.g. rapid travel enabled SARS to rapidly propagate around the globe
- Economic development; e.g. use of antibiotics to increase meat yield of farmed cows leads to antibiotic resistance
- Breakdown of public health; e.g. the current situation in Zimbabwe
- Poverty and social inequality; e.g. tuberculosis is primarily a problem in low-income areas
- War and famine
- Bioterrorism; e.g. 2001 Anthrax attacks
- Dam and irrigation system construction; e.g. malaria and other mosquito borne diseases