Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Physical Symptoms
- Heart Defects
- Characteristics of Autism
- Genital defects (in males)
- Childhood hypotonia
- Respiratory infections
- Motor Delay
- Renal defects
Behavioural Symptoms
- Passiveness
- Sociability
- Aggression
- Biting, and/or hitting
- Moodiness
- Disliking routine changes
There is a wide range of congenital problems associated with kabuki syndrome with large differences between affected individuals. Some of the common problems are heart defects, urinary tract anomalies, hearing loss, hypotonia, recurrent ear infections and postnatal growth deficiency. Other characteristics include skeletal abnormality, joint laxity, short stature, and unusual dermatoglyphic patterns.
In terms of development, mild to moderate intellectual disability is a common feature. Also, children with kabuki syndrome often have distinctive behavioral features. A few have normal intelligence, most of whom have learning difficulties such as struggling with fine motor, speech skills, and memory.
There is no indication that the life expectancy of individuals with kabuki syndrome is shortened. Most medical issues are resolved with medical intervention. The fact that there are relatively few adults known with this syndrome is probably related to its recent discovery in 1980 in Japan and around 1990 in Europe and America.
The facial appearance of individuals with this syndrome include long eyelids with turning up of the lateral third of the lower eyelid, a broad and depressed nasal tip, large prominent earlobes, and a cleft or high-arched palate.
Other clinical features often include scoliosis, short fifth finger, persistence of fingerpads, and X-ray abnormalities of the vertebrae, hands, and hip joints.
Coffin–Lowry syndrome is a severe mental retardation associated with abnormalities of:
- Growth
- "In utero" growth is normal but post natal growth is retarded. Patients are sometimes microcephalic.
- Cardio-vascular
- Cardiac abnormalities affect 15% of the patients.
- Skeleton
- Progressive kyphoscoliosis affects 1 in 2 patients. Micrognathia is also associated with this syndrome.
- Patients may also have an underdeveloped upper jaw bone, abnormally prominent brows, or widely spaced eyes.
- Vision and audition
- Auditory abnormalities are frequent and often present. Vision abnormalities are not often present.
The syndrome consists of severe micrognathia, cleft lip and/or palate, hypoplasia or aplasia of the postaxial elements of the limbs, coloboma of the eyelids, and supernumerary nipples. Additional features of the syndrome include
downward-slanting palpebral fissures, malar hypoplasia, malformed ears, and a broad nasal ridge. Other features include supernumerary vertebrae and other vertebral segmentation and rib defects, heart defects (patent ductus arteriosus, ventricular septal defect and Ostium primum atrial septal defect), lung disease from chronic infection, single umbilical artery, absence of the hemidiaphragm, hypoplasia of the femora, ossification defects of the ischium and pubis, bilobed tongue, lung hypoplasia, and renal reflux.
The symptoms associated with this syndrome are variable, but common features include: low birthweight, low muscle tone at birth, poor feeding in infancy (often requiring feeding by tube for a period) and oromotor dyspraxia together with moderate developmental delays and learning disabilities but amiable behaviour. Other clinically important features include epilepsy, heart defects (atrial septal defect, ventricular septal defect) and kidney/urological anomalies. Silvery depigmentation of strands of hair have been noted in several patients. With age there is an apparent coarsening of facial features. 17q21.3 was reported simultaneously in 2006 by three independent groups, with each group reporting several patients, and is now recognised to be one of the more common recurrent microdeletion syndromes. Recently a patient with a small duplication in same segment of DNA has been described. An overview of the clinical features of the syndrome, by reviewing 22 individuals with a 17q21.31 microdeletion, estimated the disorder is present in one in every 16,000 people.
ATR-16 syndrome affects the blood, development, and brain; symptoms vary based on the specific genes deleted on chromosome 16. Because it is so rare, it is difficult to determine the "core" symptoms of the disease. People with ATR-16 have alpha-thalassemia, a blood disorder where there is less normal hemoglobin in the blood than there should be, and the red blood cells are smaller than they should be (microcytic anemia). Affected children have various characteristic physical features, including clubfoot, "locked" little fingers, microcephaly (small head), hypertelorism (widely spaced eyes), broad, prominent nose bridge, downward-slanted palpebral fissures, small ears, retrognathia, and short neck. Children with ATR-16 syndrome also have mild to moderate intellectual disabilities, developmental delays/growth delays, and speech delays. Some children with ATR-16 have seizures, cryptorchidism (undescended testes), or hypospadias.
The following is a list of symptoms that have been associated with Roberts syndrome:
- Bilateral Symmetric Tetraphocomelia- a birth defect in which the hands and feet are attached to shortened arms and legs
- Prenatal Growth Retardation
- Hypomelia (Hypoplasia)- the incomplete development of a tissue or organ; less drastic than aplasia, which is no development at all
- Oligodactyly- fewer than normal number of fingers or toes
- Thumb Aplasia- the absence of a thumb
- Syndactyly- condition in which two or more fingers (or toes) are joined together; the joining can involve the bones or just the skin between the fingers
- Clinodactyly- curving of the fifth finger (little finger) towards the fourth finger (ring finger) due to the underdevelopment of the middle bone in the fifth finger
- Elbow/Knee Flexion Contractures- an inability to fully straighten the arm or leg
- Cleft Lip- the presence of one or two vertical fissures in the upper lip; can be on one side (unilateral) or on both sides (bilateral)
- Cleft Palate- opening in the roof of the mouth
- Premaxillary Protrusion- upper part of the mouth sticks out farther than the lower part of the mouth
- Micrognathia- small chin
- Microbrachycephaly- smaller than normal head size
- Malar Hypoplasia- underdevelopment of the cheek bones
- Downslanting Palpebral Fissures- the outer corners of the eyes point downwards
- Ocular Hypertelorism- unusually wide-set eyes
- Exophthalmos- a protruding eyeball
- Corneal Clouding- clouding of the front-most part of the eye
- Hypoplastic Nasal Alae- narrowing of the nostrils that can decrease the width of the nasal base
- Beaked Nose- a nose with a prominent bridge that gives it the appearance of being curved
- Ear Malformations
- Intellectual disability
- Encephalocele (only in severe cases)- rare defect of the neural tube characterized by sac-like protrusions of the brain
Mortality is high among those severely affected by Roberts syndrome; however, mildly affected individuals may survive to adulthood
17q21.31 microdeletion syndrome (Koolen De Vries syndrome) is a rare genetic disorder caused by a deletion of a segment of chromosome 17 which contains six genes. This deletion syndrome was discovered independently in 2006 by three different research groups.
Coffin–Lowry syndrome is a genetic disorder that is X-linked dominant and which causes severe mental problems sometimes associated with abnormalities of growth, cardiac abnormalities, kyphoscoliosis, as well as auditory and visual abnormalities.
Little is known about the natural history of Roberts syndrome due to its wide clinical variability. The prognosis of the disease depends on the malformations, as the severity of the malformations correlates with survival. The cause of death for most fatalities of Roberts syndrome have not been reported; however, five deaths were reportedly due to infection.
The following are observations that have been made in individuals with cytogenetic findings of PCS/HR or ESCO2 mutations:
- The symptom of prenatal growth retardation is the most common finding and can be moderate to severe. Postnatal growth retardation can also be moderate to severe and correlates with the degree of severity of limb and craniofacial malformations.
- In limb malformations, the upper limbs are typically more severely affected than the lower limbs. There have been many cases of only upper limb malformation.
- In hand malformations, the thumb is most often affected, followed by the fifth finger (the little finger). In severe cases, the patient may only have three fingers and in rare cases only one.
- In craniofacial malformations, mildly affected individuals will have no abnormalities of the palate. The most severely affected will have a fronto-ethmoid-nasal-maxillary encephalocele.
- The severity of limb malformations and craniofacial malformations is correlated.
- Other abnormalities can occur in different parts of the body, including:
- Heart- atrial septal defects, ventricular septal defects, patent ductus arteriosus
- Kidneys- polycystic kidney, horseshoe kidney
- Male Genitals- enlarged penis, cryptorchidism
- Female Genitals- enlarged clitoris
- Hair- sparse, silvery-blonde scalp hair
- Cranial Nerve Paralysis, Moyamoya disease, Stroke, Intellectual disability
People with the combination of Duane anomaly and radial ray malformations may have a variety of other signs and symptoms. These features include:
- Unusually shaped ears
- Hearing loss
- Heart and kidney defects
- A distinctive facial appearance
- An inward- and downward-turning foot (a clubfoot)
- Fused vertebrae.
“Branchio” refers to the branchial arches, also known as the pharyngeal arches, of the affected individual. The branchial arches are structures in the developing embryo that give rise to certain tissues in the neck and facial area. In individuals affected by this condition, the branchial arches fail to develop properly. This leads to some of the physical conditions of this syndrome, which include abnormal patches of skin on the neck and face region and can be abnormally hairy, thin or red and with a high number of blood vessels. “Oculo” refers to the eyes. Individuals have vision impairment due to several malformations in the eyes such as small eyeballs, blockage in the tear ducts or lacking eyes completely. “Facial” refers to the face; those affected can have several abnormalities in that region. These abnormalities include a cleft lip, a cleft palate which is an opening in the roof of the mouth, widely spaced eyes (hypertelorism), sharp corners of the mouth that point upward, a broad nose that can include a flattened tip, along with several deformations of both the external and middle ear structures. This syndrome is restricted to the face, but it can also cause underdeveloped or malformed kidneys.
9q34 deletion syndrome, also known as Kleefstra syndrome, is a rare genetic disorder. Terminal deletions of chromosome 9q34 have been associated with childhood hypotonia, a distinctive facial appearance and developmental disability. The facial features typically described include arched eyebrows, small head circumference, midface hypoplasia, prominent jaw and a pouting lower lip. Individuals with this disease may often have speech impediments, such as speech delays. Other characteristics of this disease include: epilepsy, congenital and urogenetic defects, microcephaly, corpulence, and psychiatric disorders. From analysis of chromosomal breakpoints, as well as gene sequencing in suggestive cases, Kleefstra and colleagues identified EHMT1 as the causative gene.
This gene is responsible for producing the protein Histone methyltransferase which functions to alter histones. Ultimately, histone methyltransferases are important in deactivating certain genes, needed for proper growth and development. Moreover, a frameshift, missense, or nonsense error in the coding sequence of EHMT1 can result in this condition in an individual.
Branchio-oculo-facial syndrome (BOFS) is a disease that arises from a mutation in the TFAP2A gene. It is a rare autosomal dominant disorder that starts to affect a child's development before birth. Symptoms of this condition include skin abnormalities on the neck, deformities of the ears and eyes, and other distinctive facial features such a cleft lip along with slow growth, mental retardation and premature graying of hair.
It causes facial abnormalities, skeletal malformation and occasionally neural tube defects; the skeletal disfigurements resolve to a degree in the course of development.
Mutations in different parts of the gene may lead to deafness or Stickler syndrome type III (eye problems: myopia, retinal detachment and skeletal abnormalities).
Infants and children: Infants that are born with Weissenbacher-Zweymüller syndrome usually have short bones in their arms and legs. The thigh and upper arm bones are wider than usual resulting in a dumbbell-shape while the bones of the vertebrae may be abnormal. Typical abnormal facial features can be wide-set protruding eyes (hypertelorism), a small and upturned nose with a flat bridge, small jaw (micrognathia) and a cleft palate. Some infants have high-frequency hearing loss. Infants may also exhibit a psychomotor delay. After the period of growth deficiency the individual makes improvements in bone growth leading to a normal physical development around age 5 or 6.
Adults: Many with Weissenbacher-Zweymüller syndrome have a catch-up growth phase causing the adults to not be unusually short. Many adults still will have hearing loss and typical abnormal facial features of Weissenbacher-Zweymüller syndrome.
Miller syndrome is a genetic condition also known as the Genee–Wiedemann syndrome, Wildervanck–Smith syndrome, or postaxial acrofacial dystosis. The incidence of this condition is not known, but it is considered extremely rare. It is due to a mutation in the DHODH gene. Nothing is known of its pathogenesis.
This is characterized by hand and arm abnormalities. The following are specific characteristics:
- Malformed or absent (aplasia) thumb
- A thumb that looks more like a finger
- Partial or complete absence of a radius
- Shortening and radial deviation of the forearms
- Triphalangeal thumb
- Duplication of the thumb (preaxial polydactyly)
Along with the four aspects of the disorder that give it its name, there are also other common symptoms:
- A downward slant of the forehead
- Delayed bone maturation
- Mental retardation
The ocular abnormalities are generally retinal coloboma and nystagmus.
3q29 microdeletion syndrome is a rare genetic disorder resulting from the deletion of a segment of chromosome 3. This syndrome was first described in 2005.
The clinical phenotype of 3q29 microdeletion syndrome is variable. Clinical features can include mild/moderate mental retardation with mildly dysmorphic facial features (long and narrow face, short philtrum and a high nasal bridge). Of the 6 reported patients, additional features including autism, ataxia, chest-wall deformity and long, tapering fingers were found in at least two patients. A review of 14 children with insterstitial deletions of 3q29, found 11 who had the common recurrent 1.6Mb deletion and displayed mental retardation and microcephaly.
The variability of phenotype is underscored by the report on a 6 and 9/12 year-old male patient with a de novo chromosome 3q29 microdeletion identified by BAC array comparative genomic hybridization assay (aCGH), with accompanying normal 46,XY high-resolution chromosome analysis. The patient has language-based learning disabilities and behavioral features consistent with diagnoses of autism and attention deficit hyperactivity disorder (ADHD) of the inattentive type. He also displays some other features previously associated with chromosome 3q29 microdeletion such as an elongated face, long fingers, and joint laxity. Most notably the patient, per formal IQ testing, was not found to have frank mental retardation as has been previously reported among patients with chromosome 3q29 terminal deletion, but rather the patient has demonstrated an average full-scale IQ result. This report further expands the phenotypic spectrum to include the possibility of normal intelligence as corroborated by formal, longitudinal psycho-educational testing.
The presence of two homologous low copy repeats either side of the deletion break-point suggests that non-allelic homologous recombination is the likely mechanism underlying this syndrome.
The three most common symptoms of Opitz G/BBB syndrome (both type I & II) are hypertelorism (exceptionally wide-spaced eyes), laryngo-tracheo-esophalgeal defects (including clefts and holes in the palate, larynx, trachea and esophagus) and hypospadias (urinary openings in males not at the tip of the penis) (Meroni, Opitz G/BBB syndrome, 2012). Abnormalities in the larynx, trachea and esophagus can cause significant difficulty breathing and/or swallowing and can result in reoccurring pneumonia and life-threatening situations. Commonly, there may be a gap between the trachea and esophagus, referred to as a laryngeal cleft; which can allow food or fluid to enter the airway and make breathing and eating a difficult task.
Genital abnormalities like a urinary opening under the penis (hypospadias), undescended testes (cryptorchidism), underdeveloped scrotum and a scrotum divided into two lobes (bifid scrotum) can all be commonplace for males with the disease.
Developmental delays of the brain and nervous system are also common in both types I and II of the disease. 50% of people with Opitz G/BBB Syndrome will experience developmental delay and mild intellectual disability. This can impact motor skills, speech and learning capabilities. Some of these instances are likened to autistic spectrum disorders. Close to half of the people with Opitz G/BBB Syndrome also have a cleft lip (hole in the lip opening) and possibly a cleft palate (hole in the roof of the mouth), as well. Less than half of the people diagnosed have heart defects, imperforate anus (obstructed anal opening), and brain defects. Of all the impairments, female carriers of X-linked Type I Opitz G/BBB Syndrome usually only have ocular hypertelorism.
De Barsy syndrome is a rare autosomal recessive genetic disorder. Symptoms include cutis laxa (loose hanging skin) as well as other eye, musculoskeletal, and neurological abnormalities. It is usually progressive, manifesting side effects that can include clouded corneas, cataracts, short stature, dystonia, or progeria (premature aging).
It was first described in 1967 by De Barsy et al. and, as of 2011, there have been 27 cases reported worldwide. The genes that cause De Barsy syndrome have not been identified yet, although several studies have narrowed down the symptoms' cause. A study by Reversade et al. has shown that a mutation in PYCR1, the genetic sequence that codes for mitochondrial enzymes that break down proline, are prevalent in cases of autosomal recessive cutis laxa (ARCL), a condition very similar to De Barsy syndrome. A study by Leao-Teles et al. has shown that De Barsy syndrome may be related to mutations in ATP6V0A2 gene, known as ATP6V0A2-CDG by the new naming system.
Alternative names for De Barsy syndrome include corneal clouding-cutis laxa-mental retardation, cutis laxa-growth deficiency syndrome, De Barsy–Moens–Diercks syndrome, and progeroid syndrome of De Barsy.
Though only definitively diagnosable by genetic sequence testing, including a G band analysis, ATR-16 syndrome may be diagnosed from its constellation of symptoms. It must be distinguished from ATR-X syndrome, a very similar disease caused by a mutation on the X chromosome, and cases of alpha-thalassemia that co-occur with intellectual disabilities with no underlying genetic relationship.
Bohring–Opitz syndrome (BOS) is a medical syndrome caused by a mutation in the ASXL1 gene. It is diagnosed by genetic testing and is characterised by characteristic craniofacial appearance, fixed contractures of the upper limbs, abnormal posture, feeding difficulties, intellectual disability, small size at birth, and failure to thrive. Some of these features are shared with other genetic syndromes.
Genetically, de novo truncating mutations in ASXL1 have been shown to account for approximately 50% of Bohring–Opitz syndrome cases.
The syndrome is extremely rare, with fewer than 80 known cases worldwide. The leading cause of death is respiratory infections. Children with BOS can have feeding difficulties, recurring respiratory infections, sleep apnea, developmental delay, failure to thrive, abnormal hair density and length, Wilm’s Tumors, brain abnormalities, silent aspiration, and other issues.